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Abstract

This paper studies how to combine real-time forecasts from a broad range of Bayesian vector
autoregression (BVAR) specifications and survey (judgemental) forecasts by optimally exploit-
ing their properties. To do that, we compare the forecasting performance of optimal pooling
and tilting techniques, incorporating the survey information in various forms. We focus on
predicting euro area inflation and GDP growth at medium-term forecast horizons and exploit
the information from the ECB’s Survey of Professional Forecasters (SPF). Results show that
the SPF exhibits good point forecast performance but scores poorly in terms of densities for
all variables and horizons. Accordingly, when individual models are tilted to the SPF’s first
moments and then optimally combined, point accuracy and calibration improve, whereas this
is not always the case when the SPF’s second moments are included in the tilting. Therefore,
judgement incorporated in survey forecasts can considerably increase model forecast accuracy,
however, the way and the extent to which it is incorporated matters. We demonstrate the
usefulness of our analysis on a case study covering the COVID-19 pandemic period.
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1 Introduction

Optimally combining forecasts from multiple models in order to robustly predict future paths
of macroeconomic variables is a methodology which has been advocated for some time in the
economic literature (see e.g. Bassetti et al., 2020, for a comprehensive review). The reason is that
it is hard to find an individual model which can be considered the “best performing” in all possible
forecasting dimensions, i.e. for any variable, at any forecast horizon, at any point in history, and
for any loss function metric (be it in terms of point or density forecast). It is then quite natural
to think about combinations as a way of averaging multiple measurements of the same outcome.
These measurements may be the result of known econometric models, or they may also come
from a mixture of (un)observed data, models, and judgement calls, such as the figures provided
in survey forecasts. There is growing evidence that combining forecasts from econometric models
with those from surveys improves forecast accuracy of the former (see e.g. Faust and Wright,
2013, and Krüger et al., 2017; or Bańbura et al., 2021, for a literature review).

In this paper, focusing on GDP growth and inflation in the euro area, we assess the point and
density forecast performance of a wide range of Bayesian vector autoregressions (BVARs) and
of the ECB’s Survey of Professional Forecasters (SPF) and study how to best combine those
forecasts by optimally exploiting their properties.

BVARs have become a standard tool for forecasting and scenario analysis in the central banking
community, above all for mid- and long-term forecast horizons (see e.g. Domit et al., 2016; Angelini
et al., 2019; Crump et al., 2021). We consider several specifications, which differ on certain
modelling choices, such as data set size and composition, data transformation, degree of time
variation, prior specification, and inclusion of off-model information. In particular, we include
standard BVAR models with constant coefficients with Minnesota (Sims and Zha, 1998; Bańbura
et al., 2010; Carriero et al., 2019) and democratic priors (Villani, 2009; Clark, 2011; Wright, 2013);
a model with time-varying parameters (Primiceri, 2005); a model with a time-varying mean and
constant coefficients (Garnier et al., 2015; Crump et al., 2016; Mertens, 2016; Del Negro et al.,
2017; Bańbura and van Vlodrop, 2018). For some models we use both a three and a 19 variable
specification, as well as bottom-up forecasts based on country models, resulting overall in 12
different BVAR specifications. We also include a univariate unobserved component model with
stochastic volatility (UCSV) in the style of Stock and Watson (2007) in the model set. Finally,
we combine those model forecasts by means of linear optimal pooling, where weights are selected
in order to maximise forecast accuracy (Hall and Mitchell, 2007; Jore et al., 2010; Geweke and
Amisano, 2011; Amisano and Geweke, 2017; McAdam and Warne, 2020) for each variable.

We evaluate the accuracy of individual models and their combinations over the period 2001-
2019 at the one- and two-year-ahead horizons, in terms of point and density forecast accuracy
by calculating Root Mean Square Forecast Errors (RMSFE), Log Predictive Scores (LPS) and
Continuous Ranked Probability Scores (CRPS). In order to assess calibration, we compute the
Probability Integral Transforms (PITs) and perform a test for the uniformity of the PITs distri-
bution (Berkowitz, 2001). The latter feature is often overlooked in forecast evaluations, although
it is key when accurate measures of uncertainty around the point forecasts are needed. We find
that pooling improves on individual models, however, it does not achieve good calibration for
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both variables and horizons.

We then turn to an additional source of information, namely the SPF, whose forecasts are known
for providing good point forecasts (Ang et al., 2007; Kenny et al., 2014). We construct a continuous
predictive distribution from the SPF histograms in order to assess their accuracy and calibration.
We find, as expected, high accuracy for the SPF point forecasts, but poor performance from a
density perspective, both in terms of accuracy and calibration. Similar results are found, among
others, in Clements (2018) and Clements (2014) for the U.S. SPF.

As our previous analysis does not yield a clear “best” forecast when comparing a combination
of BVARs against survey forecasts, we investigate two approaches to combine predictions from
both sources in a single density forecast, hence exploiting the more subjective and forward-looking
information in the SPF, as well as the more rigorous and replicable model based forecasts, which
are mostly based on backward looking information. In the first approach, after simulating draws
from the SPF predictive distributions we obtain an SPF density forecast, which we incorporate
into the set of models used for the optimal linear pool. The second method is entropic tilting.
Namely, we tilt either the individual BVAR models (“ex-ante”) or their optimal pool (“ex-post”)
to either the first or to both first and second moments of the SPF. Therefore, we extend the
literature that applies tilting to individual models (Krüger et al., 2017; Altavilla et al., 2017;
Ganics and Odendahl, 2021; Tallman and Zaman, 2020; Bobeica and Hartwig, 2022) and model
combinations (Galvao et al., 2021) or just pools econometric models (Amisano and Geweke, 2017).
To our knowledge, we are the first to combine tilted forecasts or to include survey forecasts in
econometric model density pools.

We find that incorporating survey information improves forecast accuracy, especially for the tilting
method, albeit only when the first survey moment is incorporated. When the individual models or
their optimal pool are tilted to both mean and variance of the SPF, there is a general worsening of
the forecast precision. Our results are similar to Galvao et al. (2021) for U.K.’s GDP and inflation;
they also find that judgement on the mean tends to improve model density forecasts at short
horizons, whereas survey second moments hinder performance at short horizons. Optimal pooling
of individual BVARs (with or without the SPF) improves accuracy with respect to individual
models and the SPF according to the LPS metric, while in terms of CRPS the optimal pool is
worse than the SPF for all variables and horizons, with the exception of the two-year-ahead GDP
forecast.

The option that improves forecast accuracy the most, both in point and in density terms for
both variables and horizons, is the optimal pool tilted to the SPF mean “ex-ante” (each indi-
vidual model forecast is tilted prior to pooling). This higher performance is due to improved
initial conditions: when models are tilted to informative moments, they perform better individu-
ally; consequently, the optimal pool will select different models compared to the non-tilted case,
resulting in better final scores. We conclude that improving individual models (for example by
tilting each model forecast to the SPF mean) and then pooling them optimally is the best forecast
strategy, highlighting the complementary role of both methods. The improved initial conditions
are clearly visible when looking at scores for the non-tilted and the mean-tilted individual models
relative to the optimal pool (available in Appendix D).
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As a case study, we apply the methodology during the period of the COVID-19 pandemic. We
find that while models’ uncertainty spikes (as expected, given the unprecedented events), the SPF
information gains value. Incorporating the survey predictive distribution in the optimal pool or
tilting the model forecasts to the survey first and second moment largely reduces uncertainty and
increases point and density forecast accuracy of the models.

We conclude that judgement incorporated in survey forecasts can help improve accuracy and
calibration of model forecasts, however, the way it is incorporated matters. Moreover, large shifts
in data properties might alter the best strategy and yield such judgement more beneficial.

The rest of the paper is organised as follows. Section 2 contains the description of the BVAR
models, the data used, the optimal linear pool, and its forecasting properties. In Section 3, we
explain how we construct the SPF density forecast from a discrete histogram and how these
forecasts perform. In Section 4, we illustrate the two options used to combine model and survey
information, and present the results. Section 5 analyses the performance during the COVID-19
pandemic and Section 6 concludes.

2 Pooling Bayesian VARs

Bayesian VARs have become a standard tool for forecasting and scenario analysis at central
banks, due to their competitive performance and relatively easy implementation. At the same
time, results from such models are often sensitive to some modelling choices such as data set size
and composition, data transformation, degree of time variation, prior specification, and inclusion
of off-model information. To hedge against such model uncertainty, we consider several of the
most common model variants. In particular, we choose standard BVAR models with constant
coefficients with Minnesota (Sims and Zha, 1998; Bańbura et al., 2010; Carriero et al., 2019)
and democratic priors (Villani, 2009; Clark, 2011; Wright, 2013); a model with time-varying
parameters (Primiceri, 2005); a model with a local mean and constant coefficients (Garnier et al.,
2015; Crump et al., 2016; Mertens, 2016; Del Negro et al., 2017; Bańbura and van Vlodrop, 2018);
and also a univariate unobserved component model with stochastic volatility (UCSV) in the style
of Stock and Watson (2007). The survey local mean model and the specification with democratic
priors allow including off-model information (from long-term survey forecasts) to pin down the low
frequency evolution of the modelled variables (the trends). We consider “small” (three variables)
and “medium” (19 variables) data set sizes for the euro area as a whole and a bottom-up approach
whereby the euro area forecast is aggregated from the forecasts for its four largest countries (each
obtained with a “small” country data set). While trying to include a broad range of specifications,
we also aim at not “duplicating” models (including model versions that produce similar results).

The probabilistic forecasts from individual models are combined via a linear prediction pool with
optimal weights, chosen so as to maximise forecast accuracy (Geweke and Amisano, 2011). Fore-
cast combinations have frequently been found in empirical studies to produce better forecasts than
methods based on the ex-ante best individual forecasting model. They have come to be viewed as
a simple and effective way to improve and robustify the forecasting properties of individual mod-
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els, which are subject to problems such as model misspecification, instability (non-stationarities),
and estimation error. This applies to a combination of point forecasts, but also to a combination
of probability forecasts.

In the following sections, we present more in detail the individual types of models, the data used,
the combination method, and the forecast results thereof.

2.1 Bayesian VAR types

The following model types are included in the optimal pool:

1. VAR with “Minnesota” priors

Yt = c+

p∑
i=1

BiYt−i + εt, εt ∼ N (0, Ht) , (1)

where Yt is the vector of dependent variables, c is the intercept, B1 . . . Bp are matrices
of lagged coefficients and εt is a vector of innovations. We consider two versions of the
model: (i) “in differences” (Minn Dif ) in which the trending variables are transformed as
log-differences and (ii) “in levels” (Minn Lev) in which those variables are taken in logs.

We use independent normal priors for the coefficients Bi. The prior means are equal to 0,
with the exception of the prior for the diagonal of B1 (first lag of the dependent variable
in each equation) for the specification “in levels”, which is equal to 1. Following the “Min-
nesota” convention, the coefficients for more distant lags are “shrunk” more (have tighter
priors around 0). The priors’ variances are also adjusted for relative differences in pre-
dictability. The overall degree of shrinkage, as governed by the hyperparameter λ, is set to
the standard value of 0.2 for the three-variable specification and to 0.1 for the 19-variable
composition.1 The prior for the intercept c is non-informative. See Kadiyala and Karlsson
(1997), Bańbura et al. (2010), and Carriero et al. (2019) for more details on this type of
models, which represent one of the most popular implementation of Bayesian VARs in recent
applications in macroeconomics.

2. VAR with democratic priors (Dem)

Yt = µ+

p∑
i=1

Bi(Yt−i − µ) + εt, εt ∼ N (0, Ht) . (2)

In contrast to the previous version, this parameterisation of the VAR model is in deviation
from the unconditional mean µ (sometimes referred to as the “steady state”). Informative
normal priors are used for µ (Villani, 2009) and stochastic volatility for εt (Clark, 2011). As
the mean of the prior we take the long-term forecasts from Consensus Economics (as in the

1We also evaluated the hierarchical approach of Giannone et al. (2015); the accuracy was similar to the imple-
mentation with fixed λ.
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“democratic prior” approach proposed by Wright, 2013).2 As this type of parameterisation
assumes the existence of constant unconditional mean, it is only used for variables “in
differences”. The priors for Bi are the same as above.

3. VAR with local mean (LM )

Yt − µt =

p∑
i=1

Bi (Yt−i − µt−i) + εt, εt ∼ N (0, Ht) , (3)

µt = µt−1 + ηt, ηt ∼ N(0, Vt). (4)

The VAR is written in deviation from a “local mean”, µt, that can vary over time as
a random walk (reflecting e.g. low frequency changes in demographics, productivity, or
inflation trend/expectations). For reasons similar to above, the specification is meaningful
for variables “in differences”. The priors for Bi are the same as above.

4. VAR with local mean linked to long-term expectations (SLM )

This type of VAR is specified as the previous one, but in addition the local mean is linked
to the long-term forecasts from Consensus Economics, zt:

zt = µt + gt, gt ∼ N (0, Gt) . (5)

Again, the specification is meaningful for variables “in differences” and the priors for Bi are
the same as above. See Bańbura and van Vlodrop (2018) for implementation details.

5. Time-varying parameters VAR with stochastic volatility (TVP)

Yt = ct +

p∑
i=1

Bi,tYt−i + εt, εt ∼ N (0,Σt) , (6)

ct = ct−1 + ηt, ηt ∼ N(0, U ct ), (7)

vec(Bi,t) = vec(Bi,t−1) + ηt, ηt ∼ N(0, UBt ). (8)

This is the standard implementation of the VAR where all the coefficients can vary over
time; see Primiceri (2005) and Del Negro and Primiceri (2015).

6. Univariate unobserved component model with stochastic volatility (UCSV )

This is a “non-centered” version of the UCSV model as per Stock and Watson (2007), with
gamma priors on the error variances in the two stochastic volatility state equations (see
Chan, 2018). The model decomposes each variable into a trend and a transitory component,
where each component features an independent stochastic volatility:

yt = τt + e
1
2
(h0+ωhh̃t)εyt , εyt ∼ N(0, 1), (9)

τt = τt−1 + e
1
2
(g0+ωg g̃t)ετt , ετt ∼ N(0, 1), (10)

h̃t = h̃t−1 + εht , εht ∼ N(0, 1), (11)

g̃t = g̃t−1 + εgt , εgt ∼ N(0, 1). (12)

This is the only model estimated variable by variable, therefore yt is a scalar.

2For the variables for which the long-term survey forecasts (of sufficient length) are not available (e.g. interest
rates), we use non-informative priors.
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Regarding the time-varying variances of the VAR innovations, Ht, in models 1-4 we follow the
approach for stochastic volatility of Carriero et al. (2019).3

Specifications 2. and 4. allow including off-model information that helps to pin down the uncon-
ditional mean and the trend, respectively. For this we use long-term forecasts from Consensus
Economics. Alternative sources of information could be considered as well, notably estimates of
potential growth to provide information on likely low frequency evolution of real GDP growth
(and possibly also of expenditure components).

2.2 Data set compositions

Table 1 summarises the model specifications. The model variants also differ in terms of data
set composition. For the models with aggregate euro area data we use data sets with three and
19 variables. The latter is not feasible for some model types due to computational reasons. We
also obtain bottom-up forecasts by aggregating results for the largest four countries of the euro
area (Germany, France, Italy and Spain). The latter models include country GDP and HICP
inflation, as well as the euro area level short-term interest rate. The forecasts for the euro area
are aggregated using (normalised) nominal GDP weights and official HICP country weights. A
detailed list of variables along with the applied transformations is provided in Table A.1 in the
Appendix.

In order to meaningfully compare the relative performance of econometric models and of the
judgemental forecasts from the SPF and to evaluate potential merits of incorporating the infor-
mation from the latter to the former, it is important that both approaches rely on the same
real-time information. With this in mind, we build real-time data vintages in order to simulate
the environment available to the SPF respondents and policy makers at the time of the survey
rounds. We use the historical vintages from the ECB’s Statistical Data Warehouse (SDW), with
cut-off dates set to correspond to those of the SPF rounds.4 In few cases, where vintages are not
available, we use a pseudo-real time approach, assuming no revisions. For HICP inflation, earlier
vintages are not seasonally adjusted, therefore we adjust them using X11.

Most euro area series are backdated to 1970 using the Area Wide Model (AWM) database (Fagan
et al., 2005). The first ten years of data (up to 1980Q1) are used as training sample. Estimation
starts in 1980Q2. Due to shorter data available for the countries, we use the period 1980Q2 -
1985Q4 as training sample and estimation sample starts in 1986Q1.

The main forecast evaluations rely on the vintages from the period 2001Q1 - 2019Q1.5 In a
separate section, we extend the analysis until 2021Q3, focusing on the quarters affected by the

3The matrix of impulse response functions is assumed constant and log-variances follow univariate random walks.
Bis are sampled equation by equation as in Carriero et al. (2022) to speed up the computations.

4See “Deadline to reply” in https://www.ecb.europa.eu/stats/prices/indic/forecast/shared/files/SPF_

rounds_dates.pdf.
5Given the different target periods for GDP growth and HICP inflation in the SPF this means that the evaluation

period for one-year-ahead forecasts is 2001Q3-2019Q3 and 2001Q4-2019Q4 for GDP and HICP, respectively. For
two-year-ahead horizon this is 2002Q3-2019Q3 and 2002Q4-2019Q4 for GDP and HICP, respectively.
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COVID-19 pandemic.

Table 1: Data set compositions of individual models

Minn Dif Minn Lev Dem LM SLM TVP UCSV

Euro area, 3 variables x x x x x x x
Euro area, 19 variables x - x - - - -

Big 4, 3 variables x - x - x x -

2.3 Linear optimal pool

We combine predictive densities from individual models via a linear optimal pool, where each
model contributes to the combination with a time-dependent weight driven by the model’s per-
formance in terms of predictive density (see Geweke and Amisano, 2011), namely according to
the log scoring criterion:

t∑
s=T1

log (p(ys;Ys−h, . . . , Y1,M)) , (13)

where p(ys;Ys−h, . . . , Y1,M) is the predictive density from model M for variable ys given the
data Y1, . . . , Ys−h, approximated using a non-parametric kernel smoother. The individual pre-
dictive densities are obtained by simulating the parameters from the posterior distribution and
drawing the “future” shocks. The optimal weights are found by solving the following constrained
maximisation problem:

w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I∑
i=1

wip(ys;Ys−h, . . . , Y1,Mi)

]
, (14)

where I is the number of models, w∗t+h|t = (w∗t+h|t,1, . . . , w
∗
t+h|t,I) and w∗t+h|t,i is the time-dependent

weight for model Mi.
6 The weights are constrained to be non-negative and sum to one:

w∗t+h|t,i ≥ 0 ,

I∑
i=1

w∗t+h|t,i = 1.

The combined density is a mixture of the individual densities, weighted over time by the optimal
weights found in (14). For a discussion on proper scoring rules for optimal pooling, see for example
Martin et al. (2021).

6Note that for the first 8 quarters of the evaluation sample we assume equal weights and the optimisation is
done for t = T1 + 8, . . . , T2.
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2.4 Performance of optimal pool

We look at each individual model and at their combination’s performance, according to the
following dimensions, described below: relative point accuracy (RMSFE), relative density accu-
racy (LPS and CRPS), absolute accuracy (PITs), and time-varying relative accuracy (cumulative
RMSFE, LPS, and CRPS with respect to forecasts from the optimal pool).

The root mean squared forecast error (RMSFE ) is given by:

1

T2 − T1 + 1

T2∑
t=T1

(yt − ŷit|t−h)2 ,

where T1 and T2 denote the beginning and the end of the evaluation sample, respectively, and
ŷit|t−h denotes the median of the predictive density for yt given the data up to t− h for model (or

combination) i. The measure is used to compare the accuracy of point forecasts.

The continuous ranked probability score (CRPS ) is:

1

T2 − T1 + 1

T2∑
t=T1

(∫ ∞
−∞

(F (y;Yt−h, . . . , Y1,Mi) − I(yt ≤ y))2dy

)
,

where F (·;Yt−h, . . . , Y1,Mi) denotes the predictive cumulative distribution function (correspond-
ing to the predictive density p(·;Yt−h, . . . , Y1,Mi)) and I(·) is an indicator function. The CRPS
(Gneiting and Raftery, 2007) considers the cumulative density of the forecast and its distance
from the realisation; the lower the score, the better the model accuracy.

The log-predictive score (LPS ) is:

1

T2 − T1 + 1

T2∑
t=T1

log(p(yt;Yt−h, . . . , Y1,Mi)) ,

where p(yt;Yt−h, . . . , Y1,Mi) is a predictive density for yt using information up to time t−h. The
log score is heavily affected by more extreme realisations. It may be therefore necessary to replace
particularly low values of predictive densities by a normalising constant (close to zero) in order
to avoid the log score being driven solely by such observations.

The probability integral transform (PIT ):

PITt = F (yt;Yt−h, . . . , Y1,Mi), t = T1, . . . , T2 ,

provides a measure of the model calibration; for well-calibrated predictive distribution (i.e. such
that approximates well the actual distribution), the sequence PITT1 , . . . , P ITT2 should be uni-
formly distributed over the interval [0, 1]. To test the hypothesis of uniformity, we perform the
Berkowitz test (Berkowitz, 2001)7.

7We also try the Knüppel test for the calibration of multi-step ahead density forecasts (Knüppel, 2015), obtaining
similar qualitative, albeit less discriminating, results. Omitted here and available upon request to the authors.
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Figure 1: Densities from one-year-ahead forecasts combinations and SPF.

For the cumulative relative RMSFE, CRPS, and LPS we take the difference of each model com-
bination and SPF’s score with respect to the corresponding optimal pool’s score, and cumulate it
over time.

Results from the optimal pool are shown in the first column of Table 2 and, for one-year-ahead
horizon, in each first sub-panel of Figures 1 and 2, where Figure 1 shows the forecast distribution
with median, 5th, 25th, 75th, and 95th percentile and Figure 2 shows the PITs. The results
for two-year-ahead horizon are shown in Appendix C. The figures for each individual model are
in Appendix D. We also check the accuracy of a combination with equal weights, wi = 1

I , for
robustness. We find that equal weights improve on most individual models, albeit not as much
as the optimal pool. Only a few individual models do better than the optimal pool, and none of
them does better in all metrics, variables and horizons (see Tables D.1 and D.2 in the Appendix).
For inflation, the pooling seems to add particular value, with gains from individual models in the
order of 10 − 20%. Optimal pooling also tends to improve the calibration compared to using an
individual model.

3 Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) for the European Union has been taking place
quarterly since the beginning of 1999. The survey asks to a panel of professional forecasters
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Figure 2: PITs from one-year-ahead forecasts combinations and SPF.

within the EU to give an estimate on the future values for euro area gross domestic product
growth, HICP inflation, and unemployment rate (de Vincent-Humphreys et al., 2019; Kenny et al.,
2013). We focus here on GDP and inflation forecasts, for two separate medium-term horizons,
namely one- and two-year-ahead8. Respondents are asked to give both a point forecast and to
assign probabilities for each variable’s future outcome falling within pre-determined ranges. The
individual responses are then aggregated, and a histogram of average probabilities for the economic
outlook results. We do not focus on individual responses, following the results in Genre et al.
(2013), where the simple average is proven to be the best combination method. Other aggregation
methods include optimal pooling like in Conflitti et al. (2015), and a more recent work by Diebold
et al. (2020), where the authors propose to build regularised mixtures of individual densities.

3.1 Obtaining density forecast from discrete SPF histogram

We consider, for each release of the SPF, a point forecast and a histogram based on the reported
probabilities, for the two target variables and the two horizons. From this information, it would be
already possible to calculate the SPF point forecast accuracy, standard deviation, and calibration
scores, provided one calculates a discrete approximation of the histogram, and assumes that the
probability is concentrated in the mid-point of each bin (Kenny et al., 2015). We follow this
approach to calculate mean and standard deviation for the tilting, described in the next section.

8For each round, the target quarter refers to one (or two) years after the latest official release available at the
time of the questionnaire.
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Another approach (Engelberg et al., 2009) is to assume a normal or a beta distribution for the
SPF histograms, however, this method presents the obvious shortcoming of possibly misspecifying
the distribution.

For this reason, we decide to take a non-parametric approach (see Billio et al., 2013, for an ap-
plication to prediction of stock market returns) and build a continuous SPF distribution, as well
as draws from this distribution, using a kernel smoother. The procedure to build the continu-
ous predictive distribution (density forecast) for each SPF round is as follows: starting from the
aggregated probabilities assign to the bins, we simulate N (=1000) random samples from multi-
nomial distributions, each with sample size equal to the average number of respondents times the
number of bins9, and probabilities equal to the SPF probabilities for each bin. For each sample
we then draw numbers included in the corresponding bin, making the assumption that the values
are distributed uniformly within the bin. For example, if the multinomial density has 25 counts
for the bin with bounds [1.95 2.45), we draw 25 numbers from the uniform distribution with those
bounds. Finally, we fit N kernel densities over the grid of values corresponding to the bins10 and
take the average of these N densities. We then simulate S (=5000) draws from the average kernel
density over the same grid, obtaining a simulated density forecast, which can be compared to
densities from other models, or combined with them.

3.2 Performance of SPF

Looking at the stand-alone SPF performance, two main features of the forecasts emerge. First, the
survey does extremely well in terms of point accuracy (RMSFE), particularly for HICP inflation,
where it does better than optimal model pooling (see Table B.1 in Appendix B, second column),
with the exception of two-year-ahead GDP. Second, in terms of density forecast accuracy, the SPF
tends to always be over-confident, delivering narrow distributions and u-shaped PITs (see Figures
1 and 2, upper-right panel, for the one-year horizon, and C.1 - C.4 in Appendix for the two-year
horizon).11 This is reflected also in the log-scores, which, as displayed in the second column of
Table 2, are always worse than in the case of optimal pooling (the difference of the two scores is
always negative, meaning that the SPF log scores are smaller), by a larger margin in the case of
GDP.

Figure 3 investigates the relative accuracy over time of the SPF (and of combination methods to
follow) with respect to optimal model pooling. CRPS and -LPS are in differences from those of
the optimal pool and cumulated over time. Whenever a line is below zero, the loss function (up to
that point) is smaller for the SPF or alternative combination than for optimal pooling, therefore
optimal pooling’s performance is worse. A line above zero indicates that optimal pooling is to be

9Each respondent can give a probability to each bin, therefore we can approximate the number of total answers
as the product of respondents and bins. To simplify, we assume a constant number of 80 respondents for each
round. The number of respondents does not impact the final simulated draws.

10For the extreme bins of inflation, we assume a bin size equal to all the intermediate ones; for those of GDP, we
expand the left extreme bin such that it starts at values of -10. This is to allow a more realistic distribution in this
bin during crisis periods.

11Binder et al. (2022) fit a generalised beta distribution to the density forecasts of individual SPF respondents
and also find that the forecasters are over-confident.
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Figure 3: Cumulative relative scores of one-year-ahead forecasts.

preferred to the alternative. Whenever the line is around zero, the two approaches have performed
similarly. Figure C.5 in Appendix presents analogous results for the two-year-ahead forecasts.

In terms of time variation, the SPF clearly worsens during and after the global financial crisis.
The degree of uncertainty, especially for GDP growth, was not captured by SPF respondents;
one reason for the large errors, particularly in density terms, is the fact that the pre-determined
bins for the GDP’s distribution did not reflect the economic developments. In the SPF round
of 2009Q1, for the forecast of GDP referring to 2009Q3, respondents did put a large probability
in the left-most bin, which nevertheless represented all values below -1.1%12. The realisation
for year-on-year GDP growth was close to -5% for that quarter. It is not possible to know how
the probability assigned to the left-most bin is distributed across values smaller than -1.1%. For
equally sized bins, in this particular round, the beginning of the bin would be -1.5%, returning a
predictive score of zero. This in turn would result in a value for the log-predictive score of minus
infinity. For this reason, we set a lower limit to the log score of -20, therefore selecting this value
whenever the log-score is smaller than -20; the same rule is applied to each individual model and
combination.

4 Combining model and survey information

In our first set of results, we find strengths and weaknesses in both judgement-based and combina-
tion of model-based forecasts. While the former perform particularly well in the point dimension,
the latter can considerably improve the density and calibration. For this reason, we unify these
two sources of information and look at whether and how this improves forecast accuracy.

12The bins have been expanded since after that SPF round, with ten additional bins added, for values of GDP
growth down to -6.5%
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We focus on two additional methods:

1. Including the simulated SPF density forecasts described in Section 3 into the BVAR pool
and combining individual models + SPF by means of optimal pooling (Opt Pool w SPF in
the results);

2. Using entropic tilting, including moments from the SPF, in the following four options13:

(a) Tilt to the SPF mean each individual model, then perform optimal pooling (Mean-tilted
ex-ante);

(b) Tilt to the SPF mean and variance each individual model, then perform optimal pooling
(Mean and var-tilted ex-ante);

(c) Tilt to the SPF mean the optimal pool of combined models (Mean-tilted ex-post);

(d) Tilt to the SPF mean and variance the optimal pool of combined models (Mean and
var-tilted ex-post);

4.1 Optimal pool including SPF densities

As a first method to add survey information to model forecasts, we take the same density forecasts
derived from the models described in Section 2 and the SPF predictive densities constructed as
in Section 3 and combine them by means of a linear optimal pool. The optimal weights are again
found by solving the following constrained maximisation problem, analogous to (14):

w∗t+h|t = arg max
wi

t∑
s=T1

log

[
I+1∑
i=1

wip(ys;Ys−h, . . . , Y1,Mi)

]
, (15)

where w∗t+h|t = (w∗t+h|t,1, . . . , w
∗
t+h|t,I+1), w

∗
t+h|t,i is the time-dependent weight for model Mi or for

the SPF density, and I is the number of models.

4.2 Entropic tilting

The second method consists of imposing the SPF moments as restrictions onto each individual
model density forecast before performing optimal pooling, or onto the optimally combined model
predictive distributions. To do that, we use a relative entropy approach, as seen in Robertson
et al. (2005). The procedure consists of re-weighting the draws from the forecast distribution so
that it satisfies the required restrictions while being as close as possible to the original distribution.
Tilting has been used in the past to produce conditional forecasts (imposing that the path for some
variables over the forecast period is equal to some predetermined quantities, such as in Robertson
et al., 2005) or to produce forecasts that satisfy economic theory, by imposing moments such as

13Schemes 2(c)-2(d) are also studied in Galvao et al. (2021).
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Euler conditions, as seen in Giacomini and Ragusa (2014). The tilting procedure is relatively
straightforward. The following exposition is a summary from Robertson et al. (2005), as it
corresponds to the methodology that we use.

For some variable y, let yi denote ith draw from a predictive distribution, i = 1, . . . , k. This is
a random sample from the density forecast, so initially we assign the same weight to each draw,
πi = 1

k , i = 1, ..., k.14 The basic idea of tilting is to modify those weights so that the re-weighted
distribution, with weights π∗i , satisfies the restrictions of interest; in this case, those coming from
the SPF. However, the weights are found so that the new distribution is “close” to the original one.
In order to measure the closeness of both probability distributions, we use the Kullback-Leibler
Information Criterion:

K(π∗i , πi) =

k∑
i=1

π∗i log(π∗i /πi).

The new weights are then calculated so that they minimise K(π∗i , πi), subject to the following
constraints:

π∗i ≥ 0 ,

k∑
i=1

π∗i = 1 ,

k∑
i=1

π∗i g(yi) = ḡ.

The first two constraints are trivial and imply that the new weights should be non-negative and
should sum to 1. The third constraint imposes the restrictions and implies that the expectations
of a function of the draws from the predictive distribution should be equal to a fixed quantity.

For example, if g(yi) = yi, the restriction is put on the mean of the distribution, which we would
fix to ḡ := m̄. In our application, where we use restrictions based on the SPF, we consider the
standard deviation, in addition to the mean. Matching the SPF standard deviation is straight-
forward. Given a variance ḡ := v̄, then,

g(yi) = (yi − m̄)2.

Finally, the minimisation problem yields the following solution for the new weights:

π∗i =
πiexp(γ

′g(yi))∑k
i=1 πiexp(γ

′g(yi))
.

In this case, γ is the multiplier associated with the restrictions, which can be found numerically
as:

γ = arg min
γ̃

k∑
i=1

πiexp(γ̃′[g(yi) − ḡ]).

14To simplify notation we abstract from forecast origin and horizon in this exposition. The weights are found for
each variable and forecast horizon separately.
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4.3 Performance of model combination with SPF

Results from the various combinations mentioned above can be found in Table 2 and in Figures
1 - 3. Since we already described the results for optimal pooling without judgement and for the
SPF forecasts in Sections 2 and 3, we focus here on the five remaining approaches.

The first method implies adding the forecast distribution simulated for the SPF to the pool of
BVARs and finding weights which maximise the predictive likelihood. Figure 4 shows the resulting
optimal weights; the two lower panels of the figure show the optimal weights from the pool of
BVARs only, without the SPF. The weights for the SPF densities are never very large, which
is also reflected in the relative cumulative scores of Figures 3 and C.5 (in the Appendix). The
dashed line for optimal pool with the SPF is almost always near zero for GDP growth, meaning
that CRPS and LPS are similar for both optimal pools, including and excluding the SPF. For
inflation, the weight of the SPF is more persistently positive in the second half of the sample,
reflecting in an effect on the pool’s accuracy. Looking at average scores, however, the effect seems
to vanish over the sample, with the two optimal pools returning very similar scores (third column
in Table 2: scores relative to optimal pool without SPF are close to 1 for the CRPS and to 0 for
the LPS).

The two “mean-tilted” pools (obtained from tilting to the SPF mean) improve considerably on the
original optimal pool and on the SPF itself; RMSFE, CRPS, and LPS all get better, especially for
inflation. Over time, as shown in the cumulative scores, both options perform very well for GDP
at both horizons, as well as for inflation. The dashed lines referring to the mean-tilted pools are
always below the others, particularly since the global financial crisis, when model performance
begins to diverge across combinations. The only exception is again the two-year-ahead GDP,
where, in terms of the CRPS, the optimal pool without the SPF does better, and in terms of the
LPS, it performs very similarly to the mean-tilted pools.

The mean-tilted ex-ante pool, in particular, always outperforms the other methods, both on
average and over time. This is due to the tilting of individual models, which results in improved
initial conditions: when model forecasts are tilted to informative moments, they perform better
individually. Consequently, different models are selected by the optimal pooling, resulting in
different combination weights (see Figures D.1 and D.2 in the Appendix), and better final results.
The improved initial conditions are clearly visible in Tables D.1 and D.2 in the Appendix, showing
scores for the non-tilted and the mean-tilted individual models relative to the optimal pool, for
GDP and HICP, respectively. For example, for GDP 4-quarters ahead the models with the
best log score after tilting are the time-varying parameters (TVP), the local mean (LM) and
the Minnesota in levels (MinnL). These are also the models which get a positive weight for the
majority of the sample (see Figure D.1). The large Minnesota (Minn Large) and the survey local
mean multi-country (SLM MC) models, which were obtaining a positive weight before tilting,
are now excluded from the pool. For HICP inflation, the TVP and Minnesota multi-country are
included in the pool after tilting, albeit with smaller weights, while the SLM is excluded. A larger
weight is given to the Democratic Prior (DPSV) and the large democratic prior models.

Finally, for the case of the tilting to both first and second moments of SPF, there is a general
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Figure 4: Optimal weights of one-year-ahead forecasts; BVAR models and SPF (upper panels),
BVAR models only (lower panels).

worsening of the accuracy for all variables and horizons. We notice from the distribution and the
PITs charts that this method seems to forsake model information and closely replicates the SPF
forecast. We conclude that it is counterproductive to include too much survey information when
this is not well calibrated.

5 Case study: COVID-19 pandemic period

Given the exceptional events that have occurred since the beginning of 2020, namely the COVID-
19 pandemic and its consequences on the global economy, we extend our analysis to the relevant
available quarters, in order to assess the performance of the strategies analysed above in a period
of unprecedented movements and volatility in the data.
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Table 2: Relative accuracy scores and uniformity test results for the different combinations

Optimal
Pool:
absolute
scores

SPF Optimal
Pool with
SPF

µ-tilted
ex-ante

µ-tilted
ex-post

µ and σ-
tilted ex-
ante

µ and σ-
tilted ex-
post

GDP 4-q
CRPS 0.808 0.994 0.997 0.935 0.932 0.966 0.971
LPS -1.922 -0.627 0.030 0.302 0.026 -0.406 -0.485
Berkowitz 0.042 0.000 0.016 0.624 0.279 0.000 0.000

GDP 8-q
CRPS 0.994 1.091 1.001 1.080 1.033 1.102 1.099
LPS -1.973 -1.112 -0.094 -0.042 -0.095 -1.243 -1.303
Berkowitz 0.020 0.000 0.011 0.099 0.004 0.000 0.000

HICP 4-q
CRPS 0.503 0.932 0.991 0.917 0.937 0.943 0.944
LPS -1.306 -0.024 0.003 0.117 0.056 -0.007 -0.082
Berkowitz 0.839 0.002 0.704 0.218 0.156 0.000 0.000

HICP 8-q
CRPS 0.567 0.949 1.020 0.922 0.941 0.964 0.963
LPS -1.429 -0.040 -0.001 0.082 0.032 -0.263 -0.284
Berkowitz 0.552 0.000 0.961 0.368 0.232 0.000 0.000

Note: CRPS is calculated as the ratio between each model’s score and those of optimal pooling, included
in column 1. A number smaller than one indicates a preference for the forecast in that column over
optimal pooling. LPS is calculated as the difference between the two scores, therefore a positive value
indicates a preference for the forecast over optimal pooling. Berkowitz test is in absolute terms, where
a p-value smaller than 0.10 indicates that the null hypothesis of good calibration can be rejected at the
10 percent confidence level; i.e. the density is not well calibrated.
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Figure 5 plots one-year-ahead real GDP growth density forecasts and respective realisations for
the quarters 2020Q1 to 2021Q3. The upper left panel shows the predictive distributions from the
SPF. The forecasts for the period 2020Q1 to 2020Q3 do not capture any of the higher realised
volatility in GDP growth, given that they have been produced between July 2019 and early
January 2020, when very little was known about the virus and its potential impact. However,
starting with the forecast for 2020Q4, which was compiled between 31st March and 7th April
2020, the SPF respondents’ assessment of uncertainty adapts to the new circumstances and the
realisations are well within the support of the predictive distributions (and not too far from ”the
centre”).

By contrast, the BVAR (optimal pool) forecasts (upper right panel) for 2020Q4 do not reflect
the “new reality” as the data they rely on contains little information on the pandemic.15 As the
pandemic period observations are subsequently included, the forecast uncertainty estimated from
the models “explodes”: forecast densities from the optimal pool for 2021Q2-Q3 span between -40
and +40 percentage points.

Contrary to the results presented in the previous section, which were favouring the use of the SPF
mean only as off-model information, now the models need more information from the survey in
order to improve their forecast accuracy. Both including the SPF distribution in the optimal pool,
and tilting to its first two moments ex-ante appear to help (middle two panels). The overconfidence
of the SPF densities, which in “normal” times results in a badly calibrated forecast, helps to
“sharpen” model results in the volatile period. By contrast, neither tilting individual models
only to the SPF mean (ex-ante), nor tilting ex-post (to the SPF mean and variance) manages to
improve the densities, particularly in the last quarter (2021Q3, lower two panels).

One problematic feature of tilting becomes evident when looking at the tilted distributions for
2020Q4 in the two bottom panels: when the moments to which we tilt are “far” from the original
distribution (i.e. there is a problem of support), the resulting tilted distribution may degenerate
and/or present undesirable characteristics, such as bi-modality. One way to solve this issue has
been proposed in Montes-Galdón et al. (2022), where the target tilted distribution is parametric
(skewed t). Evaluating this approach in the present context is left for future research.

The results from this section contribute to validate our main result, namely there is scope to exploit
information contained in survey forecasts to improve model forecasts. In times of heightened
volatility, however, higher moments from the judgemental distribution need to be included in
order to increase forecast accuracy. It should be stressed that the models considered in this
section have not been modified in order to deal with the extreme observations induced by the
pandemic. Some approaches to tackle this problem have been proposed (see e.g. Antolin-Diaz
et al., 2021; Carriero et al., 2021; Ng, 2021; Bobeica and Hartwig, 2022; Lenza and Primiceri,
2022) and might reduce the value added of judgemental forecasts during the pandemic that we
report above. This question is left for future research.

15For example, the preliminary flash release for euro area GDP growth in 2020Q1 was only available at the end
of April 2020.
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Figure 5: One-year-ahead real GDP growth density forecasts, COVID-19 period.
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6 Conclusions

We evaluate, in real time, point and density forecasts from a broad range of Bayesian VARs for
euro area GDP growth and inflation. We look at average density accuracy over the sample, at
overall calibration, and at relative performance over time. We then combine results from indi-
vidual models by means of a linear optimal pool, finding significant improvements with respect
to each model and to a trivial combination with equal weights. Further, we build a continuous
distribution and obtain simulated draws from aggregate histograms of the ECB’s Survey of Pro-
fessional Forecasters. Evaluating these forecasts along the same dimensions, we see a very good
performance in terms of point forecast, but a poor one in terms of density forecast, with SPF
predictive distributions being overconfident and poorly calibrated.

In order to exploit the information incorporated in the SPF, we combine its density forecasts
and those of the models via two methods. First, we include the SPF as an additional predictive
density in the linear optimal pool. Gains with respect to the original optimal pool are limited in
this case. Second, we use first and second moments from the SPF’s histograms to tilt the model
density forecasts. We tilt both the individual model densities before pooling them and the already
pooled predictive distribution. We find that when both moments are used for the tilting, there is
a general worsening of the performance, both for the ex-ante (before pooling) and ex-post (after
pooling) approach. In the case of tilting to the first moment only, all results improve with respect
to other alternatives and with respect to SPF only, particularly when individual models are tilted
before being combined.

We extend our analysis to the COVID-19 period, finding that in times of heightened uncertainty,
when model forecasts perform very poorly, more information from survey forecasts needs to be
incorporated for the accuracy to increase. Both including the SPF predictive distribution in the
optimal pool, and tilting model forecasts to the first two moments of the survey results in densities
with a non-negligible probability for the realisations.

We conclude that there are some benefits to including medium-term judgemental forecasts to a
combination of purely statistical models, with improvements in the point forecast accuracy which
are not achieved by a simple optimal pooling of those models. Good forecast calibration and
density accuracy, on the other hand, come mostly from combining individual models, confirming
the advantages of hedging against model uncertainty by using several specifications.
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Appendix

A Data Set

Table A.1: Data set

Variable Small Model Medium Model Transformation

GDP, real x x log-differences
Private consumption, real x log-differences
Total investment, real x log-differences
Exports XA, real x log-differences
Imports XE, real x log-differences
GDP deflator x log-differences
Total employment x log-differences
Short-term interest rate x x levels
Long-term interest rate x levels
Lending rate x levels
Compensation per employee x log-differences
Headline HICP x x log-differences
HICP excluding energy and food x log-differences
ESI x levels
Foreign demand x log-differences
Price of oil in EUR x log-differences
Nominal effective exchange rate x levels
US short-term interest rate x levels
US long-term interest rate x levels

Note: For the model specification “in levels”, we use the “log-levels” instead of the “log-
differences” transformation.
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B Point performance of forecast combinations and SPF

Table B.1: Relative RMSFE

Optimal
Pool

SPF Optimal
Pool
with
SPF

Mean-
tilted
ex-ante

Mean-
tilted
ex-post

Mean
and
variance-
tilted
ex-ante

Mean
and
variance-
tilted
ex-post

Univariate
GDP 4-q 1.069 0.972 0.999 0.989 0.955 0.953 0.959
GDP 8-q 1.281 1.044 1.008 1.092 1.028 1.050 1.046
HICP 4-q 0.689 0.964 1.013 0.975 0.998 0.973 0.976
HICP 8-q 0.823 0.894 1.001 0.898 0.919 0.906 0.904

Bivariate
GDP 4-q 0.944 - 1.167 0.990 0.942 0.959 0.959
GDP 8-q 0.996 - 1.008 1.068 1.023 1.050 1.045
HICP 4-q 1.069 - 1.152 0.974 1.008 0.972 0.975
HICP 8-q 1.004 - 1.001 0.908 0.912 0.899 0.902

Note: The relative RMSFE is calculated as the ratio between each model RMFSEs and
those of the univariate optimal pool (in absolute values in the first column of the upper
panel). A number smaller than one indicates a preference for the combination over the
optimal pool.

C Results for two-year-ahead forecasts
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Figure C.1: Densities of two-year-ahead forecasts from combinations and SPF, real GDP growth.
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D Performance of individual models included in the pool

In this section, we present results for the individual BVAR models described in Section 2 of the
main part. The first two tables show accuracy scores (RMSFE, CRPS and LPS) of individual
models with respect to optimal pool for the non-tilted and the mean-tilted case, for GDP and
HICP, respectively. The successive Graphs D.3-D.10 show forecast distributions and PITs of
each individual models for real GDP growth and HICP inflation forecasts at one- and two-year
horizons.
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Figure C.2: PITs of two-year-ahead forecasts from combinations and SPF, real GDP growth.
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Figure C.3: Densities of two-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure C.4: PITs of two-year-ahead forecasts from combinations and SPF, HICP inflation.
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Figure C.5: Cumulative relative scores of two-year-ahead forecasts.
Note: Scores are relative to the optimal pool forecast density’s scores and cumulated over time. A score below zero
indicates an improvement of the respective model over optimal pool.
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Figure D.1: Weights from non-tilted and mean-tilted optimal pools, one-year-ahead, real GDP
growth.
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Figure D.2: Weights from non-tilted and mean-tilted optimal pools, one-year-ahead, HICP infla-
tion.
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Figure D.3: Densities of one-year-ahead forecasts from individual models, real GDP growth.
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Figure D.4: PITs of one-year-ahead forecasts from individual models, real GDP growth.
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Figure D.5: Densities of one-year-ahead forecasts from individual models, HICP inflation.

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4Minn

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4MinnL

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4DPSV

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4LM

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4SLM

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4TVP

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4UCSV

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4Minn MC

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4DPSV MC

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4SLM MC

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4TVP MC

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4Minn Large

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

0

10
HIC4DP Large

36



Figure D.6: PITs of one-year-ahead forecasts from individual models, HICP inflation.
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Figure D.7: Densities of two-year-ahead forecasts from individual models, real GDP growth.
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Figure D.8: PITs of two-year-ahead forecasts from individual models, real GDP growth.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8Minn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8MinnL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8DPSV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8LM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8SLM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8TVP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8UCSV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8Minn MC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8DPSV MC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8SLM MC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8TVP MC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8Minn Large

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

YER8DP Large

39



Figure D.9: Densities of two-year-ahead forecasts from individual models, HICP inflation.
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Figure D.10: PITs of two-year-ahead forecasts from individual models, HICP inflation.
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