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Abstract

Forecasts produced by experts can influence the expectations of the general public,
and ultimately the real economy. In this paper I ask what type of structural drivers
do professional forecasters think will affect their projections? To what extent do they
disagree about these drivers, and how uncertain are they about their magnitude? I
model forecasts in a novel empirical macroeconomic setting, which allows me to de-
compose them into a model implied part and a judgement part, reflecting individual
expectations of future shocks. The model takes into account multi-step ahead condi-
tional forecasts, includes subjective uncertainty measured via different methods, and
identifies shocks exploiting the time-varying volatility present in the forecasts. I find
that throughout the sample, forecasters mostly disagree on the size of the shocks,
while in periods of high volatility they give a larger weight to judgement and also dis-
agree on the nature of shocks. My findings can inform policy makers by providing a
deeper insight into the expectations formation process of forecasters from a structural
perspective.
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1 Introduction

Understanding which types of shocks drive main macroeconomic aggregates such as GDP

and prices is an important, but difficult endeavor for policymakers. Particularly in times

of higher uncertainty, knowing whether supply, demand or other factors are behind macro

dynamics has direct relevance for policy decisions. A recent example is the high inflation

period started during the COVID-19 pandemic, with other prominent cases in the Great

Financial Crisis of 2008 or the high inflation of the ‘70s.

There is a specific group of agents whose opinion on these drivers is arguably very

interesting for central banks and policymakers in general: professional forecasters. They

are assumed to be “attentive” agents, who provide their forecasts after drawing from a vast

array of data, news, quantitative models, as well as individual knowledge and judgement.

Their responses can affect other agents’ expectations, such as households and corporations

(Carroll, 2003), and further feed back to investment and consumption decisions, ultimately

affecting the real economy. What kind of structural shocks they assume are driving their

forecasts? And how can their answers inform policy makers’ decisions? This paper attempts

to answer these questions by modelling professional forecasters’ responses, accounting for

the role of judgement, and identifying shocks from time variation in their volatility.

To do so, I assume each respondent produces their forecast by running a vector autore-

gression (VAR) model, to which they add a judgemental component. VARs are flexible and

general specifications, able to encompass several data generating processes. Given that we

do not know which model(s) are used by respondents to produce their forecast, any of them

risks being misspecified. The objective of the paper, however, is not to guess forecasting

methods used, rather to extract, from a general enough model of both forecasts and real-

izations, structural shocks, and analyze their variation, both over time and across agents.

I collect individual responses from the Philadelphia Fed Survey of Professional Forecasters

(SPF), for horizons between zero (i.e. nowcast) and four quarters ahead, for real GDP and
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the GDP deflator, and estimate a VAR on forecasts and data.

The estimation allows me to retrieve coefficients underlying respondents’ forecasts, and,

more importantly, the path of future shocks affecting them. This is possible thanks to

the simple assumption that agents produce conditional forecasts, that is, they adjust their

model forecasts by assuming a path for future shocks (or, in the words of Antolin-Diaz et al.

(2021), a “structural scenario”). I identify structural shocks by exploiting the stochastic

volatility present in the forecasts, and label them supply and demand shock, as defined

traditionally: a positive demand shock increases both quantities and prices, and a positive

supply shock increases quantities while decreasing prices. I then look at historical shock

decompositions and at specific episodes in US history, both from the perspective of a

representative (average) forecaster, and for the cross-section of individual forecasters.

I find that for the average respondent negative demand shocks caused the bulk of the

Great Recession, whereas the early 2000s recession was not predicted and instead positive

demand shocks were expected. As for the COVID pandemic, the strong rebound in GDP

is attributed to a positive demand shock, with stronger supply expected in 2022. Looking

at inflation, supply shocks dominate the majority of the sample, with notable exceptions

in the negative demand shocks during the Great Recession, and in the first half of the

pandemic. The average respondent does not seem to have adjusted their expectations

during the recent surge in inflation, consistently expecting future positive supply shocks to

mitigate the current negative supply (and, to a smaller extent, positive demand) factors.

Looking at cross-respondent variation, I find substantial disagreement regarding both the

size and the nature of the shocks, which heightens in periods of high instability. While

density forecasts provided by professional forecasters do contain additional information,

they do not affect the model’s stochastic volatility in an evident manner.

This paper relates and contributes to three main strands of the literature: studies which

model expectations structurally, papers on deviations of forecasters from the Full Infor-
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mation Rational Expectation (FIRE) paradigm, and empirical works analyzing surveys’

uncertainty and disagreement.

The first related field is a relatively new, but growing, strand of the literature which

looks at surveys from a structural perspective: among the most recent papers, Herbst and

Winkler (2021) extract a supply and demand factor from the co-movements of individual

survey responses across variables; Andre et al. (2022, 2021) provide empirical evidence

of agents subjective models of the economy, finding substantial disagreement on economic

drivers, both among experts and households. Less recently, Ricco et al. (2016) identify fiscal

spending shocks from expectations revisions, and quantify the effects of fiscal communica-

tion (measured through an index of disagreement) on the propagation mechanism, while

Krane (2011) characterizes forecasters’ view on frequency and duration of shocks to GDP.

I contribute to this literature by providing an empirical setting to extract structural shocks

from survey forecasts, without resorting to any theoretical model. The use of identification

via time-varying volatility in this context is also novel, and it allows me to identify shocks

solely from the intrinsic forecasts’ characteristics, without imposing ex ante restrictions.

The stylized facts found in empirical papers seem to suggest a departure from the “FIRE”

paradigm of survey respondents, which is why several later works try to model the irra-

tionality and incomplete information of expectation formation processes. These include

papers on information rigidities (Coibion et al., 2018; Coibion and Gorodnichenko, 2012;

Clements, 2022; Coibion and Gorodnichenko, 2015), imperfect or sticky information (Born

et al., 2020; Farmer et al., 2021; Del Negro et al., 2022), over- or underreaction of respon-

dents (Casey, 2021; Huang et al., 2022; Kohlhas and Walther, 2021; Bordalo et al., 2020),

heterogeneous expectations (Dovern, 2015; Dovern and Hartmann, 2017) and inattentive

forecasters (Giacomini et al., 2020; Andrade and Le Bihan, 2013). My paper departs from

this literature by not taking any specific stance on the microfoundations behind processes

of expectations formation, instead modelling expectations in a flexible, reduced form fash-
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ion. It then identifies structural drivers of forecasts, rather than looking at what type of

irrational behaviors are consistent with specific types of revisions. In other words, while

I acknowledge that forecasters may be irrational, and are certainly heterogeneous, be it

in their priors or in their judgements, I do not try to assign their responses to a specific

model, but I simply use them to extract implied structural shocks.

The last set of works includes, among others, papers analyzing empirically survey un-

certainty (Binder et al., 2022; Abel et al., 2016; Boero et al., 2015; Clark et al., 2020) and

its relationship with disagreement (Rich and Tracy, 2010, 2021).1 In this paper, I further

investigate the issue of measuring forecasters’ uncertainty, by comparing the most common

methods used to fit a continuous distribution to the discrete responses provided in surveys,

and find differences across methods are larger in periods of higher economic turbulence.

Besides, I map the observed, fixed event uncertainty to the model’s, fixed horizon one, and

use it to inform my estimation.

The rest of the paper is organized as follows: Section 2 describes the model and Section

3 the identification method. Section 4 introduces observed uncertainty, while Section 5

describes data and estimation. Section 6 presents results, and Section 7 concludes.

1A comprehensive review on survey of professionals can be found in Clements et al. (2022).
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2 A model of conditional forecasts

I assume the average2 SPF respondent runs a VAR model such as:

yt = c+ ϕ1yt−1 + ...+ ϕpyt−p + ut ut ∼ N(0, Q) (1)

where yt is a vector of observables, ut is a vector of reduced form disturbances, c is a vector

of constants, ϕ1, ..., ϕp are matrices of lagged coefficients, p is the number of lags, and Q is

the variance-covariance matrix of ut. In the following, I omit the constant and lags above

one for easier calculations, without loss of generality.

When the respondent performs an unconditional forecast based on this model for horizon

h = 1, they obtain:

Et[yt+1] = ϕ1yt, (2)

given that Et[ut+1] = 0. For any horizon h > 1,

Et[yt+h] = ϕh
1yt. (3)

Given this assumption, we define a VAR on forecasts as:

Et[yt+1] = ϕ1Et−1[yt] + ũt, (4)

with ũt = ϕ1ut, using yt = ϕ1yt−1+ut and ϕ1yt−1 = Et−1[yt]. The coefficient ϕ1 is the same

as in (1).

If each respondent were to run model 1, they would all obtain the same forecasts, given

they all observe the same data. We know this is not the case both by looking at survey data

(see Figure 1, displaying the time series of disagreement across forecasters, calculated as

2In the following, I describe the model for an average forecaster, to simplify notation. This model is
analogous to the one run for each individual forecaster and for the pooled panel of forecasters.
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the standard deviation of point forecasts across individuals) and thanks to several empirical

analyses (e.g. Andrade et al., 2016; Glas, 2020; Mankiw et al., 2003). Where do the dif-

ferences between forecasts come from? In the literature, they have been attributed among

others to imperfect information (Coibion and Gorodnichenko, 2015), asymmetric attention

(Kohlhas and Walther, 2021), or heterogeneous priors (Giacomini et al., 2020; Patton and

Timmermann, 2010). I propose they can be modeled in a general way as conditional fore-

casts: respondents adjust their (unconditional) model forecast by assuming future shocks

are different than zero. Consider the conditional forecast for yt+1 done at time t:

Et[yt+1] = ϕ1yt + Et[ut+1] = ϕ1(ϕ1yt−1 + ut) + Et[ut+1] (5)

Given ϕ1yt−1 = Et−1[yt]− Et−1[ut], rewrite:

Et[yt+1] = ϕ1Et−1[yt]− ϕ1Et−1[ut] + ϕ1ut + Et[ut+1]

The first two terms represent information available at time t− 1 (the conditional forecast

done in the previous period, and the shock assumed for period t in the previous period),

while the last two terms include information at time t, namely the current shock and the

shock expected in t + 1. The equation above can be further rearranged and be written in

terms of a “restricted” VARMA model:

Et[yt+1] = ϕ1Et−1[yt] + Et[ut+1]− ϕ1Et−1[ut]︸ ︷︷ ︸
present and past judgement

+ ϕ1ut︸︷︷︸
current shock

,

where the autoregressive (AR) part is the first term, and the moving average (MA) part

is the rest. The model is restricted in the sense that the coefficients for the AR and the

MA parts are the same, unlike a traditional VARMA model. The first two MA terms can

be interpreted as the expected future shocks (or judgement) for period t+ 1 (and t), given
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Figure 1: Disagreement for Real GDP and GDP Deflator q-o-q growth from Fed SPF
forecasts, at h=0 and h=4. Disagreement is calculated as the standard deviation of point
forecasts across individuals. Shaded bars are NBER-defined recessions.

information available until time t (and t − 1), while the last term represents the current

shock. The generalized version for h-step ahead forecasts is3:

Et [yt+h] = ϕ1Et−1 [yt+h−1] + Et[ut+h]

+ ϕ1 (Et[ut+h−1]− Et−1[ut+h−1]) + ϕ2
1 (Et[ut+h−2]− Et−1[ut+h−2]) + ...+ ϕh

1 (ut − Et−1[ut])

(6)

Equation (6) contains all conditions assumed by the respondent either at time t or t − 1,

as well as the current shock (ϕh
1ut).

3Derivations are available in the Appendix.
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2.1 State space representation

The model is cast in a state space form, both to allow for the time-varying nature of shock

volatility, and to account for missing observations when using individual level data.

Et [yt+1] = c+ ϕEt−1 [yt] + A−1
0 σt+1Et [εt+1] εt ∼ N(0, I) (7)

log(σt) = (1− ρ)σ̄ + ρ log(σt−1) + ψt ψt ∼ N(0,Σ) (8)

There are two transition equations: the first is the VAR described in (1) in its structural

representation, with A0 the matrix of contemporaneous coefficients. The second is the law

of motion of the structural shocks’ log standard deviation, which is an AR(1) process with

long-term mean σ̄ and autoregressive coefficient ρ.

As for the measurement equation, it is trivial:



Et

[
yOBS
t+h

]
Et

[
yOBS
t+h−1

]
...

yOBS
t


= Z



Et [yt+h]

Et [yt+h−1]

...

yt


(9)

where Z = IN(h+1), as there is a one-to-one relationship between model and observations,

and the last row does not have the expectations operator, because it includes only data,

known to the respondent at time t. Both yOBS
t ...yOBS

t+h and yt...yt+h are expressed in log-

differences. The Kalman filter is used to fill in missing observations for those quarters when

a respondent did not provide a forecast.
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3 Identification of structural shocks

The issue of identification in VARs is well-known and concerns any study aiming at pro-

viding a structural interpretation to model shocks, including the present one. I exploit

the statistical properties of the data and use identification via stochastic volatility. This

method is a special case of identification via time-varying volatility of Lewis (2021), him-

self building on the traditional identification through heteroskedasticity of Rigobon (2003).

Other recent works using it are Bertsche and Braun (2022) and Chan et al. (2021). The

common thread in these papers is the use of data characteristics as opposed to imposing

assumptions, as in other popular techniques such as recursive identification or sign restric-

tions. The main advantage of this is avoiding the use of external information; the biggest

drawback is the fact that while coefficients of the matrix of contemporaneous relationships

A0 are uniquely identified up to sign and column ordering, the shocks are not automati-

cally “labelled”, but need to be named ex-post, for example from looking at the impulse

responses. In a bivariate system the labelling is relatively straightforward, as described in

Section 6.

3.1 Identification via stochastic volatility

Identification via heteroskedasticity (and its variants) exploit changes in the variance of

reduced form innovations across regimes or over time. While holding contemporaneous

coefficients constant, a change in structural shock variances implies a change in the variance

of innovations. The higher number of available moments allows to identify a higher number

of coefficients, without any additional assumption. A condition for this identification to

work, besides the presence of heteroskedasticity, is that structural variances do not change

proportionately. Failure to satisfy this condition implies weak identification, as described

in Lewis (2022).
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I test for heteroskedasticity in the data by using the function provided by Lewis in his

code for Lewis (2021), which computes the Cragg and Donald (1996) test for identification

based on the first autocovariance of the outer product of residuals. The null hypothesis of

zero autocovariance is rejected at the 10% confidence level.

4 Model with uncertainty data

In macroeconomics is not common to have a direct measure of uncertainty surrounding ex-

pectations, despite increasing interest of policy makers and other agents in risk assessments.

Some surveys, however, do collect density forecasts directly from respondents. While is not

obvious how well this measure captures actual economic uncertainty, and several papers

found it to be inaccurate or misspecified (Clements, 2018; Rossi and Sekhposyan, 2014;

Glas and Hartmann, 2022; Bańbura et al., 2021), it is a wealth of information available

in panel format for several variables, and gives a direct look into the forecast variance of

survey respondents.

4.1 Measures of subjective uncertainty

The Philadelphia Fed SPF is among those surveys which require not only a point fore-

cast, but also a probability assessment. More specifically, respondents are asked to assign

probabilities between zero and one to one or more pre-determined bins, whose limits are

the values the target variable may assume. The horizons for which they respond are fixed

events, corresponding to the current and next calendar years. There are two issues to deal

with before including observed probabilities into our model: the first is how to transform a

discrete probability assessment into a continuous distribution, and the second how to con-

nect the distribution to the forecast variances of the model, which are of the fixed horizon

type (h-step ahead).
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Several papers deal with the first issue, fitting a continuous distribution of some shape

to a histogram whose within-bin distribution is not known. The most common approach

is to assume the mass in each bin is concentrated in its mid-point (Rich and Tracy, 2010).

Similarly, others assume a uniformly distributed mass (Abel et al., 2016). Fitting a normal

(Giordani and Söderlind, 2003; Boero et al., 2015) or generalized beta (Engelberg et al.,

2009) distribution are other widely used methods. For the normal or generalized beta

method to work, it is necessary to have non-zero probabilities in at least three bins, as

pointed out by Engelberg et al. (2009). Although I try all methods, for parsimony I select

only two of them, uniform and generalized beta, the latter only calculated for quarters

where at least three bins are assigned positive probability. Results for the four measures of

uncertainty for the two variables of interest, real GDP and GDP deflator, are in Figure 2.
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Figure 2: Aggregate uncertainty, given by the average of individual uncertainties, calculated
from individual histograms and according to the following methods: mass at midpoint,
uniformly distributed mass, fitting a normal, fitting a generalized beta.

12



The first thing to note is that the mass at midpoint and uniformly distributed prob-

abilities method over-estimate uncertainty compared to the normal and generalized beta

methods, as previously found in the literature (e.g. in Giordani and Söderlind, 2003). A

second point regards the uncertainty of the GDP deflator: there is a structural break in

the sample in 2014, where uncertainty drops markedly. This is due to an adjustment in

the bin width, which goes from a percentage point to half a percentage point. While we

could expect respondents to maintain their degree of uncertainty by assigning a positive

probability to double the number of bins, what happened in fact was that most respondents

kept using the same number of bins, resulting in a lower average uncertainty (as found also

by Glas and Hartmann, 2022).

The literature deals less with the second issue of transforming fixed event in fixed hori-

zon forecasts: exceptions include Ganics et al. (2020) for density, Dovern et al. (2012) and

Knüppel and Vladu (2016) for point forecasts. I include in the model a second measure-

ment equation, which makes the fixed event uncertainty comparable with the model’s fixed

horizon forecast variance. Detailed results are available in appendix, but the intuition is

that the forecast horizon varies depending on the quarter in which the survey is done. So

for a survey done in the first quarter of the year, the corresponding horizon is four quarters,

given that no information for the current year is available at that point in time. In the last

quarter of the year, when asked for a current year assessment, the respondents only have

one quarter to forecast, given that the previous three are known.

A final note on observed uncertainty: it is possible to derive two different measures of

it from individual probability assessments: aggregate uncertainty and average uncertainty.

The first is calculated by measuring the dispersion of an histogram calculated as an average

of all individual histograms. The second comes from taking individual dispersions and

averaging them over all respondents. Wallis (2005) proves that the first measure is equal to

13



the sum of the second one and disagreement.4 For the purposes of this paper, the second

measure is more precise as it accounts only for individual uncertainty and is the selected

one. In the average forecaster analysis, I take the median as opposed to the mean in order

to mitigate the effect of outliers (i.e. those respondents with a particularly high uncertainty

in certain periods, compared to the rest of the respondents).

1995 2000 2005 2010 2015 2020
0

0.2

0.4

hz
 =

 1

Uncertainty of Real GDP

1995 2000 2005 2010 2015 2020
0

0.2

0.4

hz
 =

 1

Uncertainty of GDP Deflator

1995 2000 2005 2010 2015 2020
0

0.5

hz
 =

 2

1995 2000 2005 2010 2015 2020
0

0.5

hz
 =

 2

1995 2000 2005 2010 2015 2020
0

0.5

1

1.5

hz
 =

 3

1995 2000 2005 2010 2015 2020
0

0.5

hz
 =

 3

1995 2000 2005 2010 2015 2020
0

1

hz
 =

 4

1995 2000 2005 2010 2015 2020
0

0.5

1

hz
 =

 4

Observed Estimated

Figure 3: Aggregate observed uncertainty, calculated from assigning a uniform distribution
to each bin assigned positive probability, and model estimated uncertainty, for each of the
four horizons.

4.2 Including subjective uncertainty in the baseline model

Figure 3 compares a measure of observed variance (the one obtained from assuming a

uniform distribution within each bin’s interval) with the variance implied by the model

described in Section 2. Each column corresponds to one variable and each row to one

4See again Clements et al. (2022) for more details on this decomposition and a review of the literature.
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forecast horizon. The black line has one observation per year, due to the fixed event nature

of the survey question. I find that at shorter horizons uncertainty of SPF respondents

is larger than the one estimated in the model, consistent with the findings of Clements

and Galvão (2017), but most importantly that the two variances differ substantially. For

these reasons, I run again the same model of Section 2, now including information on

observed uncertainty. I do so by first, approximating the discrete survey responses with

continuous distributions, and, second, mapping the observed uncertainty, which is a fixed

event measure, to the fixed horizon forecasts of the model. The measurement equation

allowing me to map each measure and model uncertainty is the following:

V OBS
1 (yt) = dv,1 + Zvσt +Wv,1ut,1 (10)

V OBS
2 (yt) = dv,2 + Zvσt +Wv,2ut,2 (11)

where dv is a level bias, Zv is a measurement matrix, σt is the model time-varying variance,

and ut is a measurement error with standard deviation Wv.

Figure 4 compares the uncertainty provided by respondents to the two model implied

ones, for the two variables at each of the four horizons. The red line is the model un-

certainty for the model including observed volatility, the yellow is the one for the model

without observed volatility (the baseline model of Section 2). Both lines are adjusted for

the estimated level bias dv. While the two lines are fairly similar, there are specific periods

during which the addition of observations has affected the volatility estimate: most notably,

the early 2000s and Great Recession period for GDP, 2004 and the Great Recession for the

deflator.

5 Data and Estimation

In this section I describe the data used and the steps for the estimation of the models.
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Figure 4: Aggregate observed uncertainty, calculated assuming a uniform distribution
within each bin, fitted uncertainty implied by the model with observed volatility (red line),
and fitted uncertainty implied by the model without observed volatility (yellow line).

5.1 Data

The Survey of Professional Forecasters (SPF) is a quarterly survey of experts, conducted in

the United States by the Philadelphia Fed around the middle of each quarter. At the time

of filling in the survey, all respondents have access to the Bureau of Economic Analysis’s

(BEA) advance report of the national income and product accounts (NIPA), which contains

the first estimate for GDP of the previous quarter. I use individual observations both of

point forecasts (in levels) and probabilities (in annual growth rates) for real GDP and the

GDP deflator, from the first quarter of 1992 to the first quarter of 2022. I exclude older

data due to poorer availability and differences in target variables.

For each survey round q, I observe data from q−1 to q+4, for a total of six observations
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for each variable at each quarter.5 The observation for quarter q − 1 is effectively data:

it represents the information available to all forecasters at the time of replying to the

survey. In rare cases, some forecasters assume the figure will be revised and report a

different number than everyone else, but here I assume this data point is the same for all

forecasters, and that is the data point from which they start producing their forecasts.

Given it does not include revisions, it is a real time observation. The observations from q

to q + 4, instead, are “classic” nowcasts and forecasts.

I transform the point forecasts (and data) from level to quarter-on-quarter growth rates

by taking first log-differences. When calculating growth rates for the data, I adjust for the

level shifts caused by changes in the base year over the sample. To do so, I regress the data

on dummies for the base years and on their growth rate available in the St. Louis FRED

database, then subtract the dummy coefficients from the initial growth rate. Finally, I

check for outliers in the individual data and assign missing values to observations larger

than three times the standard deviation of each variable at each horizon. The reason for

this is to avoid the possibility of misreporting, however, I do not adjust observations for

particularly turbulent periods, since in those instances outliers might be simply due to a

forecaster being much more optimistic (or pessimistic) than the average of respondents.

5.2 Estimation

Particle filter and Rao-Blackwellization I estimate the model with a frequentist ap-

proach. There are two considerations to take into account with regards to estimation: the

non linear nature of the variance process, and the specific form of the model, the “restricted

VARMA” specification described in Section 2.

Taken together, these two considerations call for the use of a particle filter: first, because

the likelihood function of the variance conditional on all the other parameters is non-linear

5For part of the sample, higher horizons (q + 5 to q + 8) are available, but I do not use them here.
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and cannot be derived analytically, and second, because the presence of stochastic volatility

makes it harder to linearize the model (see, e.g. Zhang et al., 2015).

Given the computational intensity of the particle filter, I adjust it with a technique called

“Rao-Blackwellization” (see, e.g. Hostettler and Särkkä, 2018), which allows to separate

the problem into two parts, a linear and a non-linear one. This way, I can estimate the

state equation for the point forecasts with the traditional Kalman filter, run it for each

particle, then use the results to inform the estimation of the non-linear part.

Maximization Given the complexity of my objective function, in order to estimate

optimal parameters I use the Covariance Matrix Adaptation Evolutionary Strategy (CMA-

ES) optimization routine. The basic idea behind the routine is to approximate the inverse

of the objective function’s Hessian matrix. This procedure avoids the use of gradients or

second order derivatives and relies instead on simulation, as described by Andreasen (2010)

in an application of the algorithm to DSGE models.

6 Results

6.1 Impulse response functions for all specifications

As mentioned in Section 3, identification via stochastic volatility does not allow to name

shocks ex ante. However, the sign of impulse responses can help for this purpose (see

Figure 5): for both specifications, with and without observed uncertainty, and for both

average and pooled estimation, the response of inflation (the GDP deflator) to a shock

increasing GDP by one unit is slightly positive, although close to zero, while the response

of GDP to a shock raising inflation by one unit is negative.6 From these considerations,

I label the first shock, moving GDP and inflation in the same direction, demand, and

the second one supply. Finding a very small response of inflation to changes in GDP

6The diagonal of the inverse of the matrix of contemporaneous coefficients, A−1
0 is set equal to one for

normalization purposes.
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likely reflects the characteristics of this variable over the sample considered. Estimating

the model excluding the COVID period returns an even smaller coefficient for inflation,

slightly negative. Therefore, the shock labelled demand can also be thought of as a shock

affecting growth while only affecting prices marginally, akin to a Choleski decomposition,

which however I do not impose.

Figure 5d shows impulse responses for several individuals, where the heterogeneity can

be either due to very different survey responses, or to respondents being in the survey only

for a sub-sample of data, resulting in different coefficients.
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Figure 5: Impulse response functions for different specifications, response to a one unit
shock.
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6.2 Average of forecasters

The first set of results looks at average forecasts, representing the “consensus” at each point

in time, and average uncertainty, calculated (as described in Section 4) as the average of

individual standard deviations. This data set does not suffer from the issue of missing

observations, and although it loses the dimension of heterogeneity across respondents, its

analysis is of interest as it returns insights about the “representative” forecaster.

6.2.1 Historical shock decompositions

I first look at historical shock decompositions in the standard sense, namely I calculate to

what extent each shock contributes to a variable’s dynamics over the sample (Figure 6).

I find negative demand shocks for GDP during the early 2000s, the Great Recession and

at the beginning of the COVID period, with positive demand shocks counterbalanced by

negative supply ones in the second half of the pandemic. For the GDP deflator, supply

shocks dominate the sample, although demand contributes negatively to prices both during

the Great Recession and in the first half of the pandemic.

Figure 7 shows a slightly more complex variance decomposition: the solid bars are

the same as the ones in Figure 6, namely they represent the contribution of each shock

at time t to the dynamics of GDP and of the deflator respectively for the one quarter

ahead and four quarter ahead forecasts. The shaded bars, on the other hand, represent

the contribution of judgement to the forecasts, in other words the expected shock for

that horizon and all the shocks expected for the previous horizons. In the setting of

Section 2, the solid bars represent the current shocks Et[εt], while the shaded bars are

the sums of all expected future shocks: at horizon one, just Et[εt+1], at horizon four,

Et[εt+4] + ϕEt[εt+3] + ϕ2Et[εt+2] + ϕ3Et[εt+1]. The black line plots the observed forecast for

the respective horizon.

Next I highlight some specific episodes when judgement played a relevant role, which is
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Figure 6: Historical shock decomposition, q-o-q growth rates. The black line plots the
real-time data.

also when this framework has the most insights to offer.

Mid ‘90s “inflation scare”: The period between 1994 and 1995 is characterized by

a series of interest rate hikes by the Federal Reserve, to which expectations responded al-

ready in the short term: as is visible in the third and fourth panel of Figure 7, forecasters

expected negative supply shocks to affect inflation for a number of quarters. These ex-

pectations resulted in positive inflation forecasts (black line), despite the model estimating

positive supply shocks. This apparent contradiction between model and judgement could

be attributed to a lower credibility of the Fed and its effectiveness in lowering inflation

(see e.g. De Graeve et al., 2009), resulting in forecasters re-adjusting their model forecasts

upwards.

9/11 and “Dot-com bubble”: In the very short-lived recession of the early 2000s,
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Figure 7: Historical shock decomposition of the forecast at each horizon, average forecaster.
Black lines are the observed forecasts for the corresponding horizon. Solid bars represent
current shocks, while shaded bars are the expected shocks (“judgement”).

22



the drop in GDP growth was not anticipated one year in advance (see the first panel of

Figure 7, in correspondence of the first grey shaded area). The one quarter ahead forecast

(second panel) does readjust the current demand shock by adding an additional expected

negative demand shock, and the corresponding “rebound” (positive) shock in the following

quarter.

2004-2006 “conundrum”: This period is characterized by a monetary policy tight-

ening to which didn’t correspond an increase in long-term yields. Despite negative supply

shocks affecting inflation, forecasters expected positive supply shocks to bring inflation

down both at the one quarter and one year horizon. These expected shocks could also be

hiding a higher trust in the Fed actions to bring inflation down thanks to the interest rate

hikes. While it is not possible to verify this hypothesis in my two-variable framework, it

would be interesting to investigate in future work.

Global Financial Crisis: Negative demand shocks dominate the GFC period, and

respondents expect even larger demand shocks to affect GDP, therefore adjusting their

forecasts to the downside. The deflator, on the other hand, is forecast to drop both because

of negative demand and of positive supply shocks.

COVID pandemic: In the recent pandemic, one first point to note is that both actual

and expected shocks became much larger. The negative demand shock affecting both

quantity and prices was not forecast by respondents, who expected positive demand and

negative supply shocks to bring both variables up in the first half of 2020. More recently,

since the first half of 2021, forecasters have been expecting a positive supply shock to bring

inflation down, while actual supply shocks to inflation have consistently been negative

(pushing inflation up).

In the next subsection, I zoom in on two of the above-mentioned periods: the GFC and

the COVID period.

23



6.2.2 A structural interpretation of GFC forecasts

In order to better understand what is behind forecast at specific periods in time, I run

the same counterfactual exercise that I use for the shock decomposition only for certain

quarters. I obtain two series of data: the forecast given only a demand shock occurs over

the horizon, and the one given only a supply shock occurs. I plot these two lines, together

with the observed data and the reported - or observed - forecast, in Figure 8. Each subplot

zooms in on eight quarters, where the date in the title refers to the quarter in which the

survey was published. Between end of 2008 and beginning of 2009, forecasters did expect

a negative demand shock to hit the economy, although they underestimated its size. The

forecast of deflator seems to be once again mostly affected by supply shocks, although

demand ones did play a (negative) role between end of 2008 and beginning of 2009.

6.2.3 A structural interpretation of COVID forecasts

I run the same exercise of the previous subsection also for the latest period, characterized by

first, the COVID pandemic and second, the steep increase in inflation rates due among other

factors to the war in Ukraine. Figure 9 and 10 show the respective quarters and forecasts

paths. The dire economic situation became clear to SPF respondents in the second quarter

of 2020, when although the unconditional model could not have predicted any movement in

GDP growth, forecasters adjusted their expected future shocks by assuming a negative and

then positive demand shock to GDP. Inflation was expected to grow slightly in the third

quarter of 2020 due to both the expected rebound in demand and a slightly negative supply

shock. Moving to the following year and a half, despite inflation starting to rise already in

the second quarter of 2021, forecasters seem to not have taken this information into account,

consistently assuming positive supply shocks to hit inflation over the horizon and bring it

back to target within a year. Interestingly, in the first quarter of 2022, forecasters expected

both quantities and prices to decrease, as would happen following a negative demand shock.
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Figure 8: Counterfactuals Global Financial Crisis

However, when looking at the shock contributions, it is a positive supply shock which again

is expected to lower prices and slightly increase quantities, counterbalanced by a negative

demand shock with net negative effect on economic growth.

6.2.4 Forecast error variance decomposition

Another way to look at results is by investigating the forecast error variance decomposition.

This is the time-varying share of forecast variance due to each of the two shocks over the

sample. Recall the model in state space form from Section 2:

Et [yt+1] = c+ ϕEt−1 [yt] + θσt+1Et [εt+1] εt ∼ N(0, I) (12)

log(σt) = (1− ρ)σ̄ + ρ log(σt−1) + ψt ψt ∼ N(0,Σ) (13)
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Figure 9: Counterfactuals COVID period
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Figure 10: Counterfactuals high inflation period
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The forecast variance at horizon h = 1 is:

Et [yty
′
t] = Et [θσtεtε

′
tσ

′
tθ

′] = θEt [σtσ
′
t] θ

′ = θ

 σ2
1,t 0

0 σ2
2,t

 θ′ (14)

where the last equality comes from the assumption Et [εtε
′
t] = I. To get the variance

decomposition, I set one of the two σ2
t equal to zero throughout the sample, and re-simulate

the path of the two unconditional variances without one of the two shocks. I then repeat

for the second σ2
t .

With this calculation I obtain Figure 11, where is clear the variance of the deflator is

scarcely affected by demand shocks, with some notable exceptions: the early 2000s, 2014,

and the COVID pandemic. The variance of GDP, on the other hand, has been influenced

by supply shocks throughout the sample, to a larger extent in the mid ‘90s and early 2000s,

then again in the latter half of the recent pandemic.

6.3 Pooled panel and individual forecasters

The second set of results accounts for individual differences by estimating a VAR in the

form of a pooled panel, where, although coefficients are the same for the entire cross section,

all individual information is used for the estimation, resulting in stochastic volatility and

shocks series for each respondent. This allows to analyze differences across respondents in

their forecasts due to differences in judgement and in uncertainty (given the coefficients are

constrained to be equal across respondents). Figure 12 shows the distribution of disagree-

ment about the contribution of shocks to observed forecasts for both variables at the one

year horizon. The black line is the median of the distribution while the red lines around it

are the 5th and 95th percentile. Each panel represents disagreement about the judgement

on the contribution of one shock to one variable. In other words, the first panel shows the

differences in judgement regarding the contribution of a demand shock to the forecast of
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Figure 11: Forecast error variance decomposition over the sample.

GDP at the one year horizon, the second is the same for a supply shock, and so on. What

these plots show, also compared to Figure 1 representing overall disagreement, is that the

sources of disagreement vary through time: supply disagreement widened in both direc-

tions during the 2008-2009 crisis, while the demand one increased only to the downside.

During the pandemic, most respondents agreed a positive demand shock would allow GDP

to rebound, but disagreed on the effect of this shock on prices. The effects of supply shocks

at the very end of the sample are also unclear: respondents expect larger supply shocks

to hit both GDP and inflation, but disagree on whether these shocks will be positive or

negative.

Looking at the decomposition of disagreement for specific periods can also offer interest-

ing insights: two examples are presented in Figure 13. At the beginning of the pandemic,

forecasters agreed that a negative demand shock was going to affect GDP growth over the
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Figure 12: Disagreement across respondents for each shock and each variable, one year
ahead forecast, red lines are 5th and 95th percentile.

horizon, but disagreed on its size. As for the deflator, forecasters disagreed both on the

size of shocks affecting it, and on whether a supply or a demand shock was going to affect

it (cfr. also with the upper right panel of Figure 9). In the first quarter of 2022, instead,

forecasters agreed on the assessment that a negative demand shock was going to affect

GDP, and a positive supply shock the deflator, but disagreed on the sizes of these shocks.

This information complements the one available in the lower right panel of Figure 10.
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Figure 13: Decomposition of disagreement across respondents for a subset of the Covid
period. The red areas represent disagreement about supply, the blue areas disagreement
about demand.

7 Conclusions

In this paper, I characterize structurally professional forecasters responses by running a

VAR model on their forecasts and the data they all observe. I assume respondents perform

a conditional exercise and therefore expect different structural shocks to hit the economy

over the forecast horizon. After estimating a VAR(MA) model for both the average and

individual respondents, I identify shocks by exploiting variation in their volatility. Since

I observe a discrepancy between the probability forecasts provided in the survey and the

model implied forecast variance, I add the former to the model and re-estimate it, to check

for any change in the coefficients or other results. While I find that for the most part

adding observed probability forecasts to the model does not affect results, there are some

specific periods in the sample where the model re-adjusts its volatility based on the new

information.

I then observe forecast variances and historical shock decompositions, in order to analyze

results in greater detail. I find a larger role of judgement in periods of heightened uncer-

tainty, such as the Global Financial Crisis or the COVID pandemic. In these instances,

forecasters tend to review their model forecasts to a larger extent. I also find large differ-
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ences among forecasters not only in terms of disagreement on the overall point forecast,

but also for what concerns the individual contributions of supply and demand shocks to

the forecasts.

While I do not apply my findings to a structural model, it would be interesting to do

so in order to inform more theoretical settings. Other possible extensions include applying

this setup to different surveys and countries, adding more variables in order to identify

more shocks, and shifting to a Bayesian setting to simplify estimation.
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Appendix

A A state-space model with stochastic volatility

Measurement and state equation for point forecasts:

yt = Zxt (1)

xt = c+ Txt−1 +Rtσtεt εt ∼ N(0, I) (2)

Where Z = [IN 0N ] is a matrix connecting observed forecasts to model forecasts and

xt is an unobserved state variable following an AR(1) process with drift c. T is the time-

varying matrix of coefficients and RtR
′
t is the time varying variance covariance matrix of

the standard normally distributed disturbances, εt.

Measurement and state equation for forecast variances:

V (yt) = dv + Zvst +Wvut ut ∼ N(0, I) (3)

log(σt) = (1− ρ)σ̄ + ρ log(σt−1) + ψt ψt ∼ N(0,Σ) (4)

Where dv is a bias, WvW
′
v is the variance covariance matrix of the measurement error

ut and Zv is the measurement matrix connecting observed variances and model variances.

The unobserved state variable st is the log standard deviation of εt and it follows an

AR(1) process without drift, and has shocks with variance covariance matrix RvR
′
v, Rv =[

σu1 0

0 σu2

]
.

A.1 Conditional forecasts at higher horizons

Recall the VAR defined in (5) in the main text, here expressed in structural form:

xt = c+ Txt−1 + A−1
0 λ

1/2
t εt (5)

with λt+1 = (1− ρ)λ̄+ ρλt + ut, ut ∼ N(0,Σu). The conditional forecast at horizon h = 1

is equal to:

Et [xt+1] = c+ Txt + Et

[
A−1

0 λ
1/2
t+1εt+1

]
= c+ Txt + A−1

0 λ
1/2
t+1|tεt+1|t (6)
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At horizon h = 4:

Et [xt+4] = (1 + T + T 2 + T 3)c+ T 4xt + A−1
0 λ

1/2
t+4|tεt+4|t

+ TA−1
0 λ

1/2
t+3|tεt+3|t + T 2A−1

0 λ
1/2
t+2|tεt+2|t + T 3A−1

0 λ
1/2
t+1|tεt+1|t (7)

Et−1 [xt+3] = (1 + T + T 2 + T 3)c+ T 4xt−1 + A−1
0 λ

1/2
t+3|t−1εt+3|t−1

+ TA−1
0 λ

1/2
t+2|t−1εt+2|t−1 + T 2A−1

0 λ
1/2
t+1|t−1εt+1|t−1 + T 3A−1

0 λ
1/2
t|t−1εt|t−1 (8)

Using 6, rewrite 7:

Et [xt+4] = (1+T+T 2+T 3)c+T 4c+T 5xt−1+A
−1
0 λ

1/2
t+4|tεt+4|t+...+T

3A−1
0 λ

1/2
t+1|tεt+1|t+T 4A−1

0 λ
1/2
t εt

(9)

From 8, solving for T 4xt−1:

T 4xt−1 = Et−1 [xt+3]−(1+T +T 2+T 3)c−A−1
0 λ

1/2
t+3|t−1εt+3|t−1− ...−T 3A−1

0 λ
1/2
t|t−1εt|t−1 (10)

Substitute 10 in 9:

Et [xt+4] = (1+T+T 2+T 3+T 4)c+TEt−1 [xt+3]−(T+T 2+T 3+T 4)c−TA−1
0 λ

1/2
t+3|t−1εt+3|t−1

− T 2A−1
0 λ

1/2
t+2|t−1εt+2|t−1 − T 3A−1

0 λ
1/2
t+1|t−1εt+1|t−1 − T 4A−1

0 λ
1/2
t|t−1εt|t−1

+A−1
0 λ

1/2
t+4|tεt+4|t +TA−1

0 λ
1/2
t+3|tεt+3|t +T 2A−1

0 λ
1/2
t+2|tεt+2|t +T 3A−1

0 λ
1/2
t+1|tεt+1|t +T 4A−1

0 λ
1/2
t εt

(11)

Rearrange terms:

Et [xt+4] = c+ TEt−1 [xt+3] + A−1
0 λ

1/2
t+4|tεt+4|t

+ TA−1
0

(
λ
1/2
t+3|tεt+3|t − λ

1/2
t+3|t−1εt+3|t−1

)
+ T 2A−1

0

(
λ
1/2
t+2|tεt+2|t − λ

1/2
t+2|t−1εt+2|t−1

)
+ T 3A−1

0

(
λ
1/2
t+1|tεt+1|t − λ

1/2
t+1|t−1εt+1|t−1

)
+ T 4A−1

0

(
λ
1/2
t εt − λ

1/2
t|t−1εt|t−1

)
(12)
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B The full model in companion form

For explanatory purposes, below is the full companion form of a “toy” model with two

variables, two forecast horizons and one lag. The companion form allows to clearly see the

autoregressive part (the first two terms), the moving average part (the second and third

term) and the structural shock (obtained by multiplying the diagonal of the last matrix by

the last vector).

Et[yt+2]

Et[πt+2]

Et[yt+1]

Et[πt+1]

yt

πt


=



c1

c2

0

0

0

0


+



ϕ11 ϕ12 0 0 0 0

ϕ21 ϕ22 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0





Et−1[yt+1]

Et−1[πt+1]

Et−1[yt]

Et−1[πt]

yt−1

πt−1


(13)

+



−ϕ11 −ϕ12 −ϕ2
11 −ϕ2

12 0 0

−ϕ21 −ϕ22 −ϕ2
21 −ϕ2

22 0 0

−1 0 −ϕ11 −ϕ12 0 0

0 −1 −ϕ21 −ϕ22 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0





εyt+1|t−1

επt+1|t−1

εyt|t−1

επt|t−1

εyt−1|t−1

επt−1|t−1


(14)

+



1 0 ϕ11 ϕ12 ϕ2
11 ϕ2

12

0 1 ϕ21 ϕ22 ϕ2
21 ϕ2

22

0 0 1 0 ϕ11 ϕ12

0 0 0 1 ϕ21 ϕ22

0 0 0 0 1 0

0 0 0 0 0 1





εyt+2|t

επt+2|t

εyt+1|t

επt+1|t

εyt|t
επt|t


(15)

Et [yt+2] = c1 + ϕ11Et−1 [yt+1] + ϕ12Et−1 [πt+1] + εyt+2|t + ϕ11

(
εyt+1|t − εyt+1|t−1

)
+ ϕ2

11

(
εyt|t − εyt|t−1

)
+ ϕ12

(
επt+1|t − επt+1|t−1

)
+ ϕ2

22

(
επt|t − επt|t−1

)
(16)
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Et [yt+1] = Et−1 [yt+1] + εyt+1|t − εyt+1|t−1 + ϕ11

(
εyt|t − εyt|t−1

)
+ ϕ12

(
επt|t − επt|t−1

)
(17)

= ϕ2
11yt−1 + εyt+1|t + ϕ11ε

y
t|t + ϕ12ε

π
t|t (18)

yt = Et−1 [yt]− εyt|t−1 + εyt|t = ϕyt−1 + εyt|t (19)

C Forecast variance

C.1 Measurement equations for forecast variance

Respondents assign to each bin a probability between zero and one. The extremes of the

bins represent the values taken by the annual average growth rate of RGDP and PGDP,

defined as:

yOBS =


(
x
(1)
t + x

(2)
t + x

(3)
t + x

(4)
t

)
1
4(

x
(1)
t−1 + x

(2)
t−1 + x

(3)
t−1 + x

(4)
t−1

)
1
4

− 1

 · 100, (20)

where superscripts in parentheses are the quarter of reference in year t. After transforming

and taking logs on both sides,

ln
(yOBS

100
+ 1

)
= ln


(
x
(1)
t + x

(2)
t + x

(3)
t + x

(4)
t

)
1
4(

x
(1)
t−1 + x

(2)
t−1 + x

(3)
t−1 + x

(4)
t−1

)
1
4


Applying the approximation used by Aruoba (2020) to go from arithmetic mean to

geometric mean, and well-known properties of logarithms:

ln


(
x
(1)
t x

(2)
t x

(3)
t x

(4)
t

) 1
4

(
x
(1)
t−1x

(2)
t−1x

(3)
t−1x

(4)
t−1

) 1
4

 =

1

4

(
lnx

(1)
t + lnx

(2)
t + lnx

(3)
t + lnx

(4)
t

)
− 1

4

(
lnx

(1)
t−1 + lnx

(2)
t−1 + lnx

(3)
t−1 + lnx

(4)
t−1

)
(21)

The measurement equation for the model in log-differences needs to link the observed

variance, expressed in average annual growth rates, to the model variance, expressed in
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log-difference between quarters. To do so, I start from equation 21 and add and subtract

quantities, to finally obtain:

V
[
ln
( x

100
+ 1

)]
≃

1

16
V
[
4∆ lnx

(1)
t + 3∆ lnx

(2)
t + 2∆ lnx

(3)
t +∆ lnx

(4)
t +∆ lnx

(2)
t−1 + 2∆ lnx

(3)
t−1 + 3∆ lnx

(4)
t−1

]
(22)

where ∆ lnx
(1)
t = lnx

(1)
t − lnx

(4)
t−1, ∆ lnx

(2)
t = lnx

(2)
t − lnx

(1)
t , ...

This implies higher weight assigned to the 4-q ahead forecast, which is the farthest and

most uncertain, and decreasing weight the closer the horizon. The variance in each quarter

is the sum of the forecasts variances for the periods that are still unknown, so in quarter

one all of them, in quarter four only the last one.

V
(1)
t ≃ 1

16
V
[
4∆ lnx

(1)
t + 3∆ lnx

(2)
t + 2∆ lnx

(3)
t +∆ lnx

(4)
t

]
(23)

V
(2)
t ≃ 1

16
V
[
3∆ lnx

(2)
t + 2∆ lnx

(3)
t +∆ lnx

(4)
t

]
(24)

V
(3)
t ≃ 1

16
V
[
2∆ lnx

(3)
t +∆ lnx

(4)
t

]
(25)

V
(4)
t ≃ 1

16
V
[
∆ lnx

(4)
t

]
(26)
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