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Abstract
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1 Introduction

Following the Global Financial Crisis (GFC henceforth) macro-financial linkages have taken

center stage. The origins of the crisis were rooted in financial markets, with dire macroe-

conomic consequences, which then fed back to the financial sector, and so on. The macroe-

conomic impact was both severe and clearly distinct from co-movements between the two

sectors in less turbulent times, marking a significant break from the macro-financial fluc-

tuations observed during the Great Moderation (GM henceforth).

Figure 1 plots the unconditional volatilities and correlation of a real and a financial ag-

gregate over the period 1973-2019, for four distinct subsamples, described below. We focus

on data from the United States for industrial production and a measure of financial stabil-

ity, namely the Gilchrist-Zakraǰsek (GZ henceforth) spread. The chart testifies to the fact

that both real and financial volatility exhibit stark fluctuations over time. The first period,

from the ‘70s into the early ‘80s was quite turbulent, especially at the macroeconomic level,

but to some extent also in financial markets. The second period witnessed a reduction in

real volatility starting from the mid ‘80s. During these years financial volatility, too, was

markedly low. The stability of macroeconomic fluctuations continued to the brink of the

GFC. Financial volatility, however, rose substantially much earlier: in the late ‘90s/early

‘00s financial volatility ticked up quite significantly, apparently with little, if any, change

in real volatility. The fourth period, starting with the GFC was defined by a substantial

increase in both financial and macroeconomic volatility. During these episodes, the covari-

ance between macroeconomic and financial variables has also varied. While it is negative

throughout, after the GM and before the GFC the correlation was only mildly negative.

Understanding the changing nature of macro-financial dynamics is high on the macroe-

conomic policy agenda, but it presents both the economist and the econometrician with

several challenges. First of all, even in a world of constant volatilities, one needs credible

identification assumptions to unbundle the covariance between real and financial variables.

The search for such identification assumptions permeates virtually all of structural macroe-

conometrics. Specifically, if the econometrician were to analyze the two variables using a

structural VAR (or a variant of it), she would need to impose identifying assumptions to

decompose the reduced form error variance-covariance matrix into contemporaneous inter-

actions and structural volatilities. Second, in a world of changing volatilities and covari-

ances, there is concern that any identifying assumptions used may not be time-invariant.

That is, recognising that both parameters and volatilities can change through time implies

needing to solve the identification problem in every single regime.
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Figure 1: Unconditional variances and correlation of ∆ industrial production (Y) and GZ-
spread (F), 4 subperiods.
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The first papers in the literature dealing with changing macro-financial dynamics have

essentially assumed the problem away, by imposing recursivity on the system (a Choleski

structure, where the financial block can respond contemporaneously to the macro block, but

not vice versa). Examples include Davig and Hakkio (2010), Hubrich and Tetlow (2015),

Prieto et al. (2016). While surely a convenient approach, there is a general discontent in

using such a recursive structure, both in general (e.g. Baumeister and Hamilton, 2019) and

specifically for the question of macro-financial feedbacks, where effectively it assumes one

type of feedback to be absent. Some more recent work aims at relaxing that stringency

and admits some time-varying identification assumptions. Where exactly one allows such

time variation is, however, largely arbitrary. For instance, Brunnermeier, Palia, Sastry and

Sims (2021) assume it is present only in the shock volatilities, while the contemporaneous

and autoregressive coefficients are time-invariant. Angelini, Bacchiocchi, Caggiano and

Fanelli (2019) allow some elements of the system to change over time, but assume others

fixed. Assuming any parameter constant a priori is potentially troubling because of the

immediate impact it may have on structural conclusions, but without doing so one cannot

identify structural shocks.

This is where our paper contributes. We extend the method of identification through

heteroskedasticity to a setting in which not just shock volatilities, but also parameters
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can change through time. Mathematically this creates a set of structural models rather

than a single point identified model. Economic theory provides very little guidance as to

restricting this set, so contrary to the literature we refrain from imposing further a priori

assumptions on it. Instead, we first show that within this set, a whole class of structural

models fail to match the (co-)variance patterns in Figure 1. More precisely, any model that

assumes that either contemporaneous coefficients, autoregressive coefficients or structural

shock volatilities are constant through time does not deliver. Second, among the models

where time variation is allowed in (parts of) these three blocks, a subset of them is rejected

on purely empirical grounds: we compare each model’s log-likelihood to that of a fully

flexible model, where all coefficients and shock volatilities are allowed to change in each

subperiod. A simple likelihood ratio test allows us to exclude a subset of these models,

which fail comparison with the nesting “fully flexible” model.

The rest of the models, passing the likelihood ratio test, form a set with quite different

assumptions on time variation, all of which succeed in capturing the changing macro-

financial dynamics through time. That is, they differ on exactly which elements are allowed

to vary from one period to the next. Even though this set of models may look quite disperse

to the econometrician’s eye, we show that the structural economic conclusions they give

rise to are informative in their own right. As a result, for the economist aiming to answer

structural questions, the multiplicity of nearly observationally equivalent models is not an

issue, and perhaps even a virtue.

The structural conclusions that we draw are threefold.

Time-varying volatility Macro shock volatility decreased considerably throughout the

Great Moderation and picked up again after the GFC, albeit not to the levels of the

beginning of the sample. Financial shock volatility stayed low until the end of the 90s, then

doubled and tripled in the third (2000-2008) and fourth (2009-2019) period, respectively.

These results are in line with the literature so far. Yet our analysis shows they hold in a

much broader class of models, with potentially very different identifying assumptions.

Feedbacks Our analysis reveals that the data in Figure 1 does not unequivocally pin

down the sign of macro-financial feedbacks. We show this result is in fact consistent with

theoretical models of financial frictions used to understand the GFC. Models with tradi-

tional feedbacks in which financial shocks are contractionary and in which positive real

shocks reduce financial spreads are within the set of admissible models. But so are models

in which one of the feedbacks is positive. For instance, one strand of models that features

positive feedbacks are models that feature boom-bust cycles. Such models imply that in-

creased spreads (e.g. through riskier borrowers) go hand in hand with increased investment

4



or economic activity, at least in the short run. One implication of our results is that ruling

out such models a priori (e.g. through Choleski or sign restrictions) could well imply policy

implications which are not warranted by the data.

Time variation in feedbacks Our results further suggests that there is scope for models

in which feedbacks changed over time, most markedly from period two to three. There is

particular promise for models in which the financial impact of real shocks became stronger

in the second half of our sample, while the real impact of financial shocks became more

subdued. Our analysis comes with a number of caveats. Perhaps most importantly, we

draw these conclusions based on models with a small number of variables, with time vari-

ation allowed in pre-defined periods. This enables us to assess the importance of different

assumptions on the sources of time variation. The issues we highlight will most likely also

be at play in larger models, or models with endogenously identified breaks. We provide a

first check for this claim in the three-variable extension of Section 7, with results largely

similar to the baseline specification. Overfitting might be yet another concern of partic-

ularly flexible models. We argue that limiting the time variation to four subperiods is a

first way to limit this risk, and we also show how our relatively more flexible models are

preferred (by a likelihood ratio test) to models with constant autoregressive coefficients

(i.e. more restrictive).

The rest of the paper is organised as follows. Section 2 describes the identification

method and the set of estimated models and Section 3 lists the data used. Section 4

documents that among the range of models, only a smaller set manages to successfully

replicate the volatility and covariance dynamics of both macro and financial variables.

It then documents the wide range of structural results across the set of selected models.

Section 5 discusses implications for DSGE models and Section 7 describes the relation to

traditional identification approaches and robustness analysis. Finally, Section 8 concludes.

2 Methodology

2.1 Standard identification through heteroskedasticity

Consider the following VAR model with constant parameters and time-varying volatilities:

A0yt = A1yt−1 + ...+ Apyt−p + C + Λ
1/2
t εt εt ∼ N(0, In) (1)
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where yt is a n× 1 vector of observed variables, A0 is a n× n matrix of contemporaneous

relationships, A1, ..., Ap are matrices of lagged coefficients, C is a vector of constants, εt

is a vector of independent shocks with identity variance covariance matrix, and Λ
1/2
t is a

diagonal matrix with the structural shocks’ standard deviations on the diagonal.

In the traditional VAR model with constant volatilities, that is Λt = Λ, a well-known

identification issue arises: there are n2 unknown structural parameters in A0 and Λ, but

only n(n+1)
2

empirical moments in the variance covariance matrix of reduced form shocks,

Σ. Additional identifying assumptions are needed to solve

Σ = A−10 ΛA−1′0 (2)

which may take the form of zero, long-run or sign restrictions, among the most common.

In the presence of heteroskedasticity, however, identification is possible without addi-

tional traditional identification assumptions, provided that structural volatilities do not

change proportionally between regimes and the coefficients remain constant (see Rigobon,

2003). In this approach, the identification problem is solved as a result of two features. On

the one hand, the presence of heteroskedasticity (multiple Σ) increases the amount of re-

duced form information available (on the left hand side of (2)). In the simplest, two-period

example below, heteroskedasticity implies the reduced form variance-covariance matrix Σ

takes different values in each period: Σ1 and Σ2.

Σ1 = A−10 Λ1A
−1′
0

Σ2 = A−10 Λ2A
−1′
0

(3)

On the other hand, the assumption that any time variation in structural elements must

come from changes in structural shock volatility (Λ1, Λ2), and not from changes in A0,

implies that the number of parameters on the right hand side of (3) does not increase

proportionately.

Under these assumptions identification through heteroskedasticity then pins down a

solution (e.g. Lanne et al., 2010; Lewis, 2021):

Σ−12 Σ1 = A′0Λ
−1
2 Λ1A

−1′
0 (4)

takes the form of an eigenvalue decomposition, where the columns of A0 are the eigenvectors

and the elements of Λ−12 Λ1 the eigenvalues. The eigenvalues need to be unique for the

elements of A0 to be identified (up to sign and row permutation), which means that the
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relative volatilities are not constant across regimes.1 When the number of subperiods or

regimes is higher than two, it can be shown that the model in (1) is over-identified. The

second row of Table 1 provides a numerical example of this overidentification, for time-

varying Λ and constant A0.

2.2 An extension: identification through time variation

Identification through heteroskedasticity avoids imposing economic restrictions and is par-

ticularly popular in a setting of macro-financial feedbacks, where convincing a priori restric-

tions are hard to come by. One evident shortcoming is the necessity for A0 to be constant,

which is in itself an assumption on the time-invariant nature of transmission mechanisms.

This assumption is at odds with many DSGE models of macro-financial feedbacks that

describe the GFC, such as models with occasionally binding constraints (e.g. Guerrieri and

Iacoviello, 2017; Lindé, Smets and Wouters, 2016). The assumption also has stark policy

implications, as several works on the Great Moderation or in the uncertainty literature

indicate.2 Against this background, it seems particularly unwarranted to impose constant

feedbacks a priori.

Allowing feedbacks to change across subperiods s suggests estimating:

A0,syt = A1,syt−1 + ...+ Ap,syt−p + Λ1/2
s εt εt ∼ N(0, I) (5)

rather than (1), which permits time variation in all three blocks of coefficients: A0,s, Aj,s

(j = 1, ..., p) and Λs. The matrix A0,s of contemporaneous coefficients is estimated in

terms of changes with respect to the previous period: in the first period, A0,1, in the second

period, A0,2 = A0,1 + Q, where Q is a matrix of same dimensions as A0,1; the matrix Aj,s

of autoregressive coefficients is estimated freely in each period, i.e. Aj,1, Aj,2, ... Aj,s are

uncorrelated across periods; finally, the matrix Λs of shocks volatilities is imposed to be

non-zero in the first period (meaning that shocks volatilities are always estimated in the

first period, and then might vary or stay constant in the subsequent periods, depending on

whether volatilities are re-estimated or a zero restriction is imposed).

1A restriction is necessary to exclude scaling of Λ or A0. This can be obtained by setting Λ1 = 1 (as
in, e.g., Herwartz and Lütkepohl, 2014), or by imposing the average of Λt across periods equal to one (as
in Brunnermeier et al., 2021), or by normalising the diagonal of A0 to be equal to one in every subperiod,
as we do below.

2Cogley and Sargent (2001, 2005); Lubik and Schorfheide (2004); Sims and Zha (2006); Baele, Bekaert,
Cho, Inghelbrecht and Moreno (2015); Caggiano, Castelnuovo and Groshenny (2014); Alessandri and Mum-
taz (2019); Carriero, Clark and Marcellino (2018a,b).
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Table 1: Number of moments and parameters for different model specifications.

Model # moments # parameters Numerical example

Constant model n(n+1)
2

n(n− 1) + n 3 moments < 4 params

Time-varying Λ sn(n+1)
2

sn(n− 1) + n 12 moments > 10 params

Time-varying A0 and Λ sn(n+1)
2

s[n(n− 1) + n] 12 moments < 16 params
Note: n is the number of variables, s is the number of subperiods or regimes. The numerical example refers
to the case where n = 2 and s = 4.

Time variation in coefficients poses a problem for identification through heteroskedas-

ticity, however. Once A0 is allowed to change across periods, (3) generally admits multiple

solutions (beyond normalisation and row permutations). Consider the two-period case once

more, where now we allow for time-varying A0,s:

Σ1 = A−10,1Λ1A
−1′
0,1

Σ2 = A−10,2Λ2A
−1′
0,2

(6)

which implies

Σ−12 Σ1 = A′0,2Λ
−1
2 A0,2A

−1
0,1Λ1A

−1′
0,1 . (7)

Clearly the information in Σ1 and Σ2 no longer suffices to pin down the structural param-

eters and volatilities, i.e. the matrices A0,1, A0,2, Λ1, Λ2.
3 The last row of Table1 gives an

example with two variables and four subperiods.

Some papers have addressed this by picking a single solution to (7), e.g. Angelini et al.

(2019) and Bacchiocchi and Fanelli (2015). They argue in favour of specific zero restrictions

and time-constant parameters in A0,s, and impose those a priori. We find it very hard to

come by convincing economic restrictions that plausibly narrow down the set of solutions.

Economic theory provides very little guidance in the matter. Both zero restrictions and

parameter-constancy are scarce in recent DSGE models of macro-financial feedbacks. In

light of that, rather than arguing for a single solution, we study the entire set of solutions

to (7). More precisely, we estimate in structural form all possible versions of (5) subject

to the constraint that the number of elements that are estimated in A0,s and Λs (∀s) is

equal to the number of moments that can be obtained from Σs (∀s), so that each model is

exactly identified.

3Note that time variation in lagged coefficients Aj,s (for j = 1, ..., p) does not affect the identification
problem directly, but is relevant through the impact it has on the estimation of Σs.
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2.3 Suite of models and estimation

We estimate by maximum likelihood a suite of two-variable structural vector autoregression

(SVAR) models such as the one in (5), with one real sector variable and one financial sector

one. We assume a standard Gaussian log-likelihood for each regime:

log(Ls) = −NT
2
log (2πdet(Σs))−

1

2

T∑
j=1

u′jΣ
−1
s uj (8)

where s is the subscript indicating the regime or subperiod, N is the number of vari-

ables, T is the number of observations in each subperiod, Σs = A−10,sΛsA
−1′
0,s is the variance

covariance matrix of reduced form shocks and uj = yj − βsxj, with βs = A−10,sAj,s. Each

maximisation problem is a separate one in each period, with the likelihoods only linked

by the fact that the parameters in A0,s are connected across periods via the following:

A0,2 = A0,1 +Q2, A0,3 = A0,1 +Q2 +Q3, and so on, where Q2, Q3 are matrices of the same

dimension as A0. We use a standard unconstrained maximisation algorithm. The models

all have the same lag structure (p = 4), but they differ as to where and when time variation

is allowed. For example, one model might have different contemporaneous coefficients in

all the four subperiods of the sample, but constant variance for one of the shocks; another

model might have time-varying variances and constant transmission mechanism of the real

to the financial sector. We do not select where time variation lies a priori, instead we

estimate all possible combinations.

2.3.1 Number of estimated models

We first calculate the total number of parameters and moments, in order to determine how

many restrictions are necessary for the model to be identified.

In total, we have n(n− 1)s+ ns parameters. In A0, at most we can estimate n(n− 1)s

parameters, where n is the number of variables and s the number of subperiods.4 In Λ,

we always estimate the first period volatilities (n), and at most we can have ns estimated

parameters.

We have sn(n+1)
2

moments, which corresponds to the maximum number of parameters to

estimate. In the numerical example in the last row of Table 1, this implies 16 parameters

and 12 moments. We can then estimate 12 parameters, to be assigned randomly to 16

locations either in A0 or in Λ. This corresponds to (16 − 12) = 4 zero restrictions across

4Recall that the diagonal of A0 is set equal to one in all subperiods.
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A0 and Λ and all subperiods.

We establish the number of possible model by means of a simple combination, n!
k!(n−k)! ,

where n is the number of possible locations, 16, and k the number of restrictions needed for

each model to be identified, 4. Given our numbers, we have 1001 possibilities, corresponding

to as many models to estimate.

3 Data and subperiods

In our main specification the real sector variable is the monthly growth rate of U.S. real

industrial production,5 while for the financial sector we use the corporate bond spread

of Gilchrist and Zakraǰsek (GZ spread).6 A word of caution is necessary regarding the

financial variable: there are many aspects of financial markets that might affect the real

economy differently; often, papers use composite indicators such as the Financial Condition

Index by the Chicago Fed, or different spreads like the term or the safety spread. Each

indicator can be more or less connected to financial market developments, and more or

less correlated to the business cycle. As we show in Figures 13 and 13 in the Appendix,

however, similar dynamics seem to hold for several other financial indicators.

The data goes from January 1973 to the end of 2018. Based on well known events and on

the volatilities dynamics shown in Figure 1, we split the sample into four subperiods: the

“Great Inflation”, from the start of the sample till mid-1984, followed by the long “Great

Moderation”, interrupted at the start of the century by a third period characterised by

high financial volatility (caused, among others, by the burst of the “dot-com bubble”).

The final subperiod includes the “Great Recession” of 2008 and the recovery experienced

by the US after the crisis. Brunnermeier et al. (2021) also use fixed period dates and select

seven distinct regimes, based on changes in the volatilities of ten data series; Angelini et

al. (2019) only have three regimes, with the Great Moderation assumed to last until the

eve of the GFC. We follow closely the latter regime division, further adding the “dot-com

bubble” period due to the striking break in financial volatility (see Figure 1) coupled with

little change in the real one. Note that the exact cutoff date for each subperiod does

not affect estimation consistency even if it does not correspond exactly to the date when

volatilities changed, as long as the average volatilities in each period are different and do

not change proportionally, as explained in Sims (2020).

5From the FRED database.
6See Gilchrist and Zakraǰsek (2012). Available at

https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/files/ebp_csv.csv
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4 Model Selection and Results

We proceed in three steps. First, we show that one can reject a subset of estimated models

on purely empirical (reduced form) grounds. We then disregard those models and zoom

in on the set of models that does succeed in matching the data. Second, to make these

models comparable for structural inference, we address the issue of permutations. Third,

we present the structural implications of the set of successful, comparable models.

4.1 Model selection

The log-likelihood of each model is one measure which can be used for selection, provided

that the compared models are nested.7

Figure 2: Estimated log-likelihoods for 1001 estimated models.
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Note: The dashed line is the threshold of the likelihood ratio test and the black dashes indicate the positions
of the two Choleski models.

Figure 2 shows the estimated likelihoods for all models, sorted from highest to lowest, or

best to worst. There is a clear deterioration in the likelihood beyond a threshold (see the

dashed line). Given that one important feature of any empirical model is the ability to fit

the data well, we only focus on the models with the best likelihoods. In order to select them,

7With nested models, it is possible to “penalise” the most flexible one for the additional degrees of
freedom.
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Figure 3: Unconditional variances and correlation of ∆ industrial production (Y) and GZ-
spread (F).
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Note: Range of models (dashed lines), data (solid lines).

we perform a likelihood ratio test between each model and a model where all coefficients

and shocks volatilities are assumed to be time-varying. This “general” model is itself

unidentified, but nests all the identified models whose likelihoods are plotted in Figure 2.

The dashed horizontal line represents the threshold between the models passing and those

failing the test at the 5% significance level. The black vertical dashes highlight the two

models with a Choleski identification (where the matrix of contemporaneous coefficients,

A0, is forced to remain triangular across all the four subperiods). The other models above

the dashed lines in Figure 2 are all models combining time variation in A0 and in Λ for some

or all of the subperiods, and a time-varying matrix of lagged coefficients Aj. All models

above the horizontal line in Figure 2 are able to replicate the variances and correlation

patterns of Figure 1. Figure 3 shows the unconditional variance and correlation bounds

of the models that are not rejected by the likelihood ratio test (dashed lines), and the

corresponding values from the data (solid lines). The models follow very closely all three

moments in all four subperiods, with a larger dispersion across models only in the last two

periods for the variance of the financial variable.

All models in Figure 2 feature time variation in A0, Λ and Aj, while keeping a constant
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Figure 4: Unconditional variances and correlation of ∆ industrial production (Y) and GZ-
spread (F).

1975 1980 1985 1990 1995 2000 2005 2010 2015
-1

-0.5

0

0.5

1

1.5

2

Uncond. var. of Y Correlation Uncond. var. of F

Note: “Time-Varying Volatility only” model (dashed lines), data (solid lines).

number of estimated parameters. Models where either A0, Λ or Aj are assumed constant

do not succeed in replicating the (co-)variance pattern of Figure 1. Any such model is

also rejected by a likelihood ratio test relative to the unidentified model where everything

varies. Table 2 provides likelihood comparisons for a subset of these models: namely, it

compares models with constant Aj matrices and models where Aj vary in each period. The

first two columns show the likelihood for the respective model, and the third shows the

result from the likelihood ratio test, with critical values in parentheses. A value for the

test higher than the critical value indicates indicate rejection of the null, restricted model

in favour of the alternative, unrestricted model. Although here we show only three specific

models (constant A0 and Λ, constant A0 and time-varying Λ, time-varying A0 and constant

Λ), similar results hold also for all the models above the dashed line in Figure 2, namely a

model with time-varying Aj is always preferred to the corresponding (nested) model with

constant Aj.

Among the models that are rejected, one deserves specific mention: the red dot in the

lower right corner of Figure 2 indicates the likelihood of a model where A0 and Aj are

assumed constant, and Λ is allowed to change in every subperiod. We deem this particular
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Table 2: Log-likelihoods from different model specifications.

Model Aj constant Aj time-varying LR Test
Constant model -407.82 -298.16 219.32 (72.15)

Time-varying Λ, constant A0 -294.95 -196.66 196.6 (74.47)
Time-varying A0, constant Λ -354.37 -198.08 312.58 (72.15)

Note: The last column shows values for the LR tests, with critical values in parentheses. A value for
the test higher than the critical value indicates indicate rejection of the null, restricted model in favour of
the alternative, unrestricted model.

model relevant given that its time assumptions are the same as Brunnermeier et al. (2021).

We name it “time-varying volatility (TVV) only” model, and note that its likelihood falls

way below the threshold line.8 Figure 4 shows the unconditional variances and correlation

for this model, proving further its inability to fit the data dynamics, particularly with

regards to the correlation line.

4.2 Permutations

One feature of identification through heteroskedasticity is that shocks are identified only

up to sign and column permutation. For a given number of variables (and equations), n,

there exist n! permutation matrices (including the identity matrix). Consider the following

simplified system of equations, with two variables (y1 and y2) and no lags:[
y1

y2

]
= A−10 Λ1/2

[
ε1

ε2

]
(9)

where

A−10 =

[
1 α

γ 1

]−1
=

1

1− αγ

[
1 −α
−γ 1

]
and

Λ1/2 =

[
λ1 0

0 λ2

]
.

Equation (9) is observationally equivalent to:[
y1

y2

]
= A−1∗0 Λ1/2∗

[
ε2

ε1

]
(10)

8Note that for this model we estimate fewer parameters than for all other models of Figure 2, so while
the scale of its likelihood might not be comparable to the other models, we adjust the degrees of freedom
when performing the likelihood ratio test, and the TVV only model does not pass the test.
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where A−1∗0 = (HPA0)
−1 and Λ1/2∗ = HPΛ1/2P−1, P is a permutation matrix, P =[

0 1

1 0

]
and H is a diagonal rescaling matrix such that the diagonal elements of A∗0 are

equal to ones, H =

[
1
γ

0

0 1
α

]
. Finally, HP =

[
0 1

γ
1
α

0

]
. Note that the order of the shocks in

this “permuted model” has swapped.9

This is the common issue of permutation within the identification through heteroskedas-

ticity approach. In models in which there is only time variation in Λ, there can be no

permutation from one period to the next. Once we also allow time variation in parameters,

additional permutations become possible. Specifically, if all coefficients vary, then the order

of equations can change between periods.

To pick among all possible permutations, we minimise distance to a “baseline” model.

As a baseline model, we choose one where the number of permutations is limited, namely

one of the two Choleski models.10 The triangular structure of this model reduces the

possibility to swap equations across periods. We compare each model’s impulse response

functions to those of the baseline model, and find the permutation which minimises the

distance between each model’s IRFs and the baseline.11 As a measure of distance we use

the weighted average distance of the IRFs per period and variable, where the weights are

the inverse of the standard deviation of each variable in each period. The IRF horizons are

given equal weight up to horizon h = 20, and zero weight after that. Considering alternative

baseline models or measures of distance does not substantially change our conclusions.

4.3 Structural Results

After selecting the subset of models able to replicate the variance-covariance dynamics,

and re-ordering the shocks in each model such that they are comparable, we can look at

structural results across models. We first investigate impulse responses, enabling us to

label the structural shocks from an economic perspective; we then look at individual model

elements, namely the shock volatilities, the impact effects, and the lagged effects. These

results are based on the maximum likelihood point estimate of each model, and therefore

represent results across models, where each model is roughly equally likely, in the sense

that it passed the reduced form test of Section 4.1.

9See Lanne et al. (2017) for a further explanation of permutations.
10Whilst it is irrelevant which of the two Choleski model we pick, we show here results for the lower

triangular Choleski decomposition.
11This approach is similar to impulse response matching methods used to match impulse responses from

DSGE models to those from VARs (e.g. Christiano et al., 2005).
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4.3.1 Impulse response functions

Figure 5 shows the cross-model dispersion of impulse responses in each of the four periods,

with responses to a one standard deviation shock. The dark grey area includes 68% of all

models and the light grey 95% of them. As mentioned before, these are cross-model results

and they should not be interpreted as traditional confidence bands: each model is equally

likely. The dashed red lines indicate median, minimum, and maximum IRF.

Identification through heteroskedasticity solves the identification problem, but it does

not label the shocks it identifies. We now analyze the impulse response functions in order to

name the two shocks as a real and a financial shock, respectively. Our labelling is based on

the following considerations. First of all, the presence of a substantial response on impact:

it seems natural to require that a real shock has a non-zero impact on the real variable, and

that a financial shock affects the financial variable on impact.12 In addition to a relatively

small contemporaneous effect on IP, the shock in the second column has more of a delayed

effect on IP compared to the first column. This provides additional motivation for labeling

this shock the financial shock: it is fairly generally accepted that changes in interest rates

reach their maximal effects on real activity with a delay. These dynamics also stand in

contrast to the first shock where the effects are both immediate and long lasting, giving

additional support for labeling the first shock as the real shock.

These IRF are helpful in labeling shocks, but combine the effects of changing contempo-

raneous and lagged parameters as well as structural shock volatilities. We now disentangle

the role of those more clearly.

4.3.2 Structural coefficients

We now look at cross-model structural results, namely structural shock volatilities, impact

and lagged effects. Figures 6-9 plot distributions and scatter plots of shock volatilities and

transmission mechanisms across all selected models (all models whose likelihood is above

the dashed line in Figure 2). In this Section we merely describe the estimated distributions

across all models, and their changes over time. In Section 5 we discuss the structural

implications of these distributions at length.

Figure 6 shows the cross-model distribution for the volatilities of the real and the financial

shock, respectively in the upper and lower panel.13 Time variation in shock volatilities is

12These contemporaneous effects are estimated to be in a pretty tight range across models, which helps
in selecting permutations across models.

13The distributions for both Figure 6 and 7 are obtained by fitting a Kernel density to the elements of
interest across all selected models.
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Figure 5: Cross-model dispersion of impulse response functions.
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minimum and maximum across models. For IP the Figure shows the cumulated response.

clearly visible, confirming the well established result that US macroeconomic and financial

shocks exhibited heteroskedasticity since the ‘70s. More specifically, real shock volatility

decreased markedly from period one to two, and only increased back in period four, namely

the beginning of the GFC, without reaching pre-Great Moderation levels. Financial shock

volatility, on the other hand, was low in the first two periods, and started to increase in

the early ‘00s and to a larger extent in the GFC period.

Figure 7 shows in the two panels cross-model distributions for the contemporaneous

effect of a unit financial shock on the real variable and a unit real shock on the financial

variable. By investigating the effect of a unit shock, we isolate the role of changes in

parameters, thus excluding the role of Λ. By looking at the contemporaneous impulse

response, we exclude the role of lagged coefficients Aj, j > 0. Therefore this figure zooms

in on the off-diagonal elements of A0. The first result to note is that the curves span both

signs in the horizontal axis, pointing at a undetermined sign for the impact effect. Second,
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Figure 6: Distributions of shock volatilities for all selected models, per subperiod.
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Figure 7: Distributions of structural coefficients for all selected models, per subperiod.
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Figure 8: Scatter plot of impulse response functions for all selected models, per subperiod,
h=0.
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Figure 9: Scatter plot of impulse response functions for all selected models, per subperiod,
h=10.

-12 -10 -8 -6 -4 -2 0 2 4
 Y /  u

financial
, h=10

-0.4

-0.2

0

0.2

 F
 / 

 u
re

al
, h

=
10

1973-1983
1984-1998
1999-2007
2008-2018

19



time variation is present and it goes in opposite directions for the two effects: the financial

on real impact in the upper panel diminished between period two and three, where the

tails of the distributions clearly shrink. The real on financial impact, visible in the lower

panel of Figure 7, increased between the second and third period, as can be noticed by the

thicker tails of the yellow and purple distributions.

Figure 8 plots the two contemporaneous effects against one another. It illustrates how

any given model captures the co-movement between the macro and financial variable. Re-

call from Figure 1 that the unconditional correlation between the two variables is always

negative, but not extremely so: it fluctuates between -.2 and -.5. While that correlation

includes lower frequency co-movement, it is instructive to view it through the lens of the

two short term feedbacks in Figure 8.

By and large the models populate three quadrants. The upper right quadrant is close to

empty, and that is easily understood in light of the negative correlation in Figure 1: models

which feature two positive feedbacks imply a positive correlation, which is counterfactual.

To match the negative correlation in the data one needs at least one negative elasticity.14

The two diagonal quadrants have one of the feedbacks negative. These are models in

which either the real shock has a positive impact on the financial variable, or the financial

shock has a positive impact on the real variable, but not both. These models succeed

in capturing the negative unconditional co-movement of Figure 1 by mixing a negative

conditional impulse response with a positive one. To a rough approximation, so long as

the variance caused by the shock with positive covariance is not too big, these models are

able to generate a negative unconditional correlation. The lower left quadrant has both

feedbacks negative. In these models, the real variable responds negatively to a financial

shock and the financial variable responds negatively to a real shock.

The above illustrates how models with different signs of feedbacks generate the co-

movement patterns of Figure 1, depending on which quadrant they locate in. But Figure

8 reveals more. It also suggests that there is a clear change in the slope from period two to

three: there appears to be an increase in elasticity of the financial to the real sector and at

the same time a decrease in the elasticity of the real to the financial sector. It is useful to

understand how that too relates to the patterns of Figure 1. A distinct feature of Figure

1 is that from period two to three financial volatility (green line) goes up without causing

an increase in macro volatility (blue line). How do models capture that? One possibility

is by increasing the volatility of financial shocks. This immediately generates the jump

in the green line. To prevent macro volatility from going up, however, these models must

14Throughout the text, we use the term “elasticity” and “feedback” interchangeably.
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feature a financial-to-real feedback that is close to zero. If they do not, macro volatility

would go up in tandem, which is counterfactual. Yet many models do exhibit a significant

financial-to-real feedback. They keep macro volatility constant by reducing the sensitivity

of the real variable to the financial variable. The increased financial volatility does not

need to originate in increased financial shock volatility. It can also come about as a result

of increased real shock volatility at constant real-to-financial feedback. The minor move to

the right in the red to yellow distribution in the top panel of Figure 6 suggests this is true

for some, but not many models. Another source of the increased financial volatility can be

real-to-financial sensitivity (at constant real shock volatility), which is more pervasive: the

stark widening of the red to yellow distribution in the bottom panel of Figure 6.15

Figure 9, finally, shows the transmission effects for a longer horizon (h = 10). In other

words, the plot represents the impulse response of the real variable to a financial shock after

10 periods (on the x-axis), and of the financial variable to a real shock after 10 periods

(on the y-axis). While so far the discussion was only based on A−10 and Λ, in this plot

the transmission is determined also by the lagged coefficients, Aj. A clear result is that

at longer horizons, signs become more negative: the majority of models exhibit negative

cross-variable effects for both shocks.

5 Implications for structural models

These results have several interesting implications for structural (DSGE) models. It is worth

repeating that despite displaying very different IRF, all the models studied in Section 4

have very similar log-likelihoods; they all succeed in matching the time variation in the

data. Further narrowing down the set to a single structural model cannot be done unless

one is willing to impose additional restrictions, which is not our objective here. In fact, our

discussion below advises against doing so. We here dwell on two specific implications of our

structural results, and what they imply for DSGE models of macro-financial interactions.

We first argue that the finding that the sign of contemporaneous macro-financial feedbacks

is not determined is actually consistent with the wide range of models proposed in the

literature. We then discuss what the estimated time variation in macro-financial feedbacks

15Understanding how these models capture the time-varying correlation also sheds light on why a model
with time variation only in shock volatility underperforms. Since feedbacks are assumed constant, the“TVV
only” model has only one way to generate time-varying correlation, which is by changing relative volatilities
of shocks through time. It must therefore seek a compromise between matching two volatilities and one
correlation, but has only two parameters to do so, in λt. Figure 4 shows that compromise implies that the
TVV model misses virtually all time variation in the correlation.

21



suggests for DSGE models and channels.

5.1 Feedback signs

Figures 7 and 8 make clear that the signs of the macro-to-financial and financial-to-macro

feedback are not determined.

A positive co-movement between financial spreads and macro variables may seem counter

to models of financial frictions. A simple Bernanke, Gertler and Gilchrist (1999) (BGG

henceforth) type framework, for example, would suggest that both cross-responses ought

to be negative. On the one hand, a positive real shock (e.g. aggregate demand) improves

firms’ financial conditions and thus reduces the spread. On the other hand, a financial shock

(e.g. reduction in firm net worth) increases the spread firms pay for investment and will

thus reduce economic activity. In terms of the (short term) scatter plot in Figure 8, DSGE

models with these mechanisms in place would locate in the lower left (negative, negative)

quadrant. Our estimates suggest that indeed there are successful empirical models with

those features.

Yet the bulk of estimated models locate in either the upper left or lower right quadrant.

Are these estimated models inconsistent with models of financial frictions? Consider Table

3, which contains a (by no means exhaustive) sample of DSGE models of macro-financial

interactions. The table contains information on the sign of (short term) impulse responses

of financial spreads to macro shocks (Column 1) and the response of macro variables to

financial shocks (Column 2).

The first couple of rows of Column 1 confirm the aforementioned intuition in typical

models of the financial accelerator: macro shocks induce negative co-movement between

spreads and macroeconomic activity, indicated by the negative sign for e.g. BGG, Gertler

and Karadi (2011). However, not all shocks and models imply that positive real shocks will

reduce spreads. The Carlstrom and Fuerst (1997) model implies positive co-movement.

In Cúrdia and Woodford (2010), some of the real shocks induce positive co-movement.

De Graeve (2008) illustrates that the cyclicality of spreads can change when the BGG

model is extended with Smets-Wouters style shocks and frictions (BGG+SW in Table 3).

Faia and Monacelli (2007) show that the cyclicality of the Carlstrom-Fuerst model can

change. The Jermann and Quadrini (2012) model implies that spreads reduce following a

negative productivity shock. Taken together, Column 1 highlights that theories of financial

frictions imply that positive macro shocks can lead to both higher and lower financial

spreads. The response depends on the particular type of financial friction, the type of
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Table 3: A sample of contemporaneous IRF in structural models

∂F
∂ureal

∂Y
∂ufin

Bernanke-Gertler-Gilchrist <0 <0
Gertler-Karadi <0 <0
Carlstrom-Fuerst >0 .
Jermann-Quadrini >0 <0
Curdia-Woodford ≷0 <0
BGG + SW ≷ 0 .
Faia-Monacelli <0 .
Justiniano-Primiceri-Tambalotti . >0
Bordalo-Gennaioli-Shleifer . ≷ 0

Note: a positive macro shock is one that increases GDP, a
positive financial shock is one that increases the financial
spread. Different models may have different and multiple
real shocks.

macro shock, and real/nominal frictions elsewhere in the economy.

Column 2 reviews the cyclicality of spreads conditional on financial shocks, which re-

ceived more attention since the GFC. The typical financial accelerator models suggest that

financial shocks that lead to higher spreads will cause GDP to fall, which is consistent

with conventional wisdom. The Jermann and Quadrini (2012) model, too, leads to a coun-

tercyclical financial spread. Yet the literature has also proposed alternative theories for

financial crises, which one might summarily characterise as boom-bust views. According

to these, in the boom phase there is scope for investment (or GDP) and financial spreads

to rise simultaneously. There are different potential sources of that positive co-movement.

One class of models suggest that the extensive margin of borrowers, or risk, is important.

Credit demand or supply are high in the boom phase, leading to more yet riskier investment.

The table contains two such examples. The first is Justiniano, Primiceri and Tambalotti

(2010), in which excess credit supply induces banks to lend more. While credit may become

cheaper for a given borrower (i.e. the intensive margin), increased credit supply also im-

plies access to credit for less creditworthy borrowers (i.e. the extensive margin). As riskier

borrowers enter the pool, financial spreads rise while investment increases. A second class

of models suggests behavioral sources for high credit demand: borrowers have wrong (e.g.

overly optimistic) expectations. Consumers or firms are willing to borrow at higher spreads

because they are overly optimistic about future (e.g. house price) realizations. An example

of this class of models is the work of Bordalo, Gennaioli and Shleifer (2018). Note that

these theories predict that the positive co-movement in the boom is followed by negative co-
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movement in the bust-phase. This too, is consistent with our results: Figure 9 shows that

at longer horizons the majority of models are located in the (negative, negative) quadrant.

Together, Table 3 suggests that structural models in the DSGE literature all fall within

the realm of estimated macro-financial interactions. On the basis of the data studied here,

all these models have the scope to generate the feedbacks we estimate. This is consistent

with the wide variety of DSGE models that have been used to understand the GFC, and

the claim they match important features of it.

5.2 Time variation

The results of Section 4 reveal that only models that feature time variation in both pa-

rameters and volatilities can replicate the time-varying (co-)variance patterns in the data.

It is noteworthy that most DSGE models of macro-financial interactions feature either

stochastic volatility (e.g. Fernández-Villaverde et al., 2015) or time variation in parameters

(e.g. Guerrieri and Iacoviello, 2017), but not often both. Our results regarding structural

stochastic volatility are generally in agreement with empirical models for both real and fi-

nancial shocks (e.g. Brunnermeier et al., 2021). While pinpointing an exact structural model

cannot be done on the basis of our results, they do suggest that there is particular promise

for models in which time variation in the structure of the economy is present. Specifically,

the evidence suggests that the financial impact of real shocks became stronger in the second

part of our sample, while the real impact of financial shocks became smaller. While this

may seem odd at first glance given the immense real impact of the GFC, that came about

in the presence of an increased volatility of financial shocks. As such, a narrative in which

the economy became more resilient as a result of financial innovation/deregulation in the

‘80s and ‘90s, but thereby also became more vulnerable to (perhaps new types of) financial

shocks seems plausible. The increased elasticity of financial variables to macro aligns well

with models arguing that financial constraints became more relevant. This narrative is

consistent with the changes in the shape of the cross-model distributions of macro-financial

feedbacks and volatilities over time. This is not to say that alternative narratives and

models are ruled out by our results: so long as a model’s feedbacks and shock volatilities

over time move within the distributions shown, our results suggest it may well be able to

capture macro-financial covariances over time.

We are hesitant to draw more specific structural conclusions from our results on time

variation, because there are multiple conceptual interpretations possible. On the one hand,

one could look at the time variation in a single estimated model, and interpret the change
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in parameters as a change in the sensitivity for a given structural mechanism. On the other

hand, it is equally possible to think of time variation within a single estimated model as

reflecting changing importance of different structural mechanisms, e.g. models that switch

between frictions over time.

6 Extension: a three-variable VAR

A caveat to our analysis is the fact that our specification is a small system, with only two

variables. While a number of recent studies also focus on two-variable systems (e.g. Adrian

et al., 2019, 2021), it is well known that missing relevant variables or shocks can generate

undesirable effects. Particularly, missing out on a relevant variable may be absorbed by

parameter and volatility estimates changing over time in a smaller model, even if there was

no time variation in the data generating process. While this is always a relevant concern

for any empirical model, we feel the results from our two variable specification generate

substantial insight in their own right. The volatility and covariance patterns of Figure 1

are a feature of the data (see also Appendix A) and need to be matched also by bigger

models. The coherence between different sources of time variation is much more difficult

to evaluate in larger models, yet the same effects we illustrate can be at play.

In this Section we present results for a specification with three variables, and show that

our results do not change substantially. One point to note is that increasing the number of

variables (and therefore of coefficients) implies a much larger set of possible models (refer

to subsection 2.3.1 for an explanation of how we calculate all possible combinations). We

sideline this issue by estimating a random sample of possible models, with the assumption

that results can be generalised for the whole “population” of models. As a third variable,

we add the federal funds rate, complementing it with the shadow rate by Wu and Xia

(2016) for the zero lower bound period.

Figures 10, 11 and 12 present cross-model structural results for the three-variable spec-

ification. Results for the real and the financial shocks are broadly similar to the baseline

case. In addition, we label the additional shock (which we order second) “monetary policy

shock”, after inspecting the impulse response functions (Figure 10): the second shock has a

delayed negative effect on industrial production, an immediate positive effect on the federal

funds rate, and a delayed positive effect on the GZ spread.

The model distributions in Figure 11 are broadly consistent with the two variable case:

higher financial shock volatilities since the early 2000s, low real shock volatility in the Great

Moderation period, coupled with larger effects of real shocks on the financial sector at the
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Figure 10: Cross-model dispersion of impulse response functions, 3-variable specification.
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Note: The dark grey area collects 68% of the models, the light grey 95%, and the dashed lines are the
minimum and maximum across models.

beginning of the century; additionally, the volatilities of the monetary policy shock behave

as expected given the Great Moderation and zero lower bound periods, with large volatility

only in the first subperiod (Great Inflation). Finally, Figure 12 qualitatively confirms the

baseline findings: the same quadrants are populated. Because the system is bigger, the close

connection between the correlation in Figure 1 and contemporaneous impulse responses is

less tight than described in Section 4.3.2 (since IRF of other variables to other shocks also

affect the unconditional correlation). This causes the models to locate in clouds more than

the almost linear locations in Figure 8. Yet the qualitative conclusions remain.
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Figure 11: Distributions of structural coefficients and of shock volatilities for selected 3-
variable models, per subperiod.
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Figure 12: Scatter plot of impulse response functions for selected 3-variable models, per
subperiod, h=0 and h=10.
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7 Further discussion and robustness

7.1 Alternative identification approaches

The results also shed light on what alternative approaches to identification imply. They will

typically boil down to picking a point or a quadrant in Figure 8 a priori. The fact that the

plausible models span across multiple quadrants implies the data as such cannot distinguish

between very different theoretical models. Table 3 suggests that the spectrum of theories

on financial frictions does not obviously pin down any particular quadrant (let alone a

single point) a priori. This suggests that alternative approaches such as point restrictions

(e.g. Choleski) or sign restrictions will not credibly identify shocks in this setting. All they

would do is constrain regions that are plausible both a priori (cf. Table 3) and a posteriori

(Figure 2). It is exactly in light of difficulties with traditional approaches to identification

that identification through heteroskedasticity was proposed by Rigobon (2003). What our

approach and results show is the power of that approach can be extended to models in

which not just variances, but also parameters are changing over time.

7.2 Labelling and permutation algorithm

As described in Section 2, identification through heteroskedasticity (and our extension of

it) does not pin down the interpretation of shocks. The specific algorithm we use to choose

among various permutations, the labelling of the shocks and the choice of baseline model

can be contested. Yet there are a number of reasons that suggest alternative approaches

to permutations will not overturn our results.

First, the exact choice of baseline model does not have a big impact on our results. Sec-

ond, we have thoroughly investigated alternative approaches to permutations (e.g. alterna-

tive weights and horizons in impulse response matching) and find no substantive changes

in conclusions. Third, other than normalization, alternative permutations or choice of la-

belling essentially swap real and financial shocks with one another. In terms of Figure 8, an

alternative label (i.e. calling the real shock financial and vice versa) effectively boils down

to flipping models around the 45-degree line. That means that alternative shock-labels or

permutations will never permute all models into a single quadrant. While one might hope

to reduce the two diagonal quadrants into one, we have considered such permutations and

it is very obvious from the IRF across these permuted models that they mix up two distinct

types of shocks.

Note also that the permutation problem can actually become clearer in bigger systems,
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as adding variables and shocks can help pin down certain shocks and equations more clearly,

see Section 6.

8 Conclusions

We generalize “identification through heteroskedasticity” to a setting in which both pa-

rameters and shock volatilities change over time. Both types of time variation are required

to match macro-financial (co-)variances in the data. Our generalization leads to set rather

than point identification. The set of empirically successful identified models is informative

for understanding macro-financial feedbacks. It reveals why different theories of financial

frictions, with very different feedbacks, can all succeed in explaining financial crises. Tradi-

tional approaches to identification needlessly exclude some of these theories. Our estimates

suggest particular promise for DSGE models which feature an increase in the sensitivity of

financial spreads to macro variables, while macro variables themselves became less sensitive

to financial spreads. Just like macro-financial feedbacks, structural shock volatility is also

time-varying.
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A Alternative indicators

Figure 13: Unconditional variances and correlation of various indicators
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(a) Chicago Fed National Activity Index (CF-
NAI) and National Financial Conditions Index
(NFCI)
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mium (Gilchrist and Zakraǰsek, 2012)
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bility of Default (Gilchrist and Zakraǰsek, 2012)
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Figure 13: Unconditional variances and correlation of various indicators - continued
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